Welcome to Journal of Tea Science,Today is
Research Paper

Construction of Green Tea Recognition Model Based on ResNet Convolutional Neural Network

  • ZHANG Yi ,
  • ZHAO Zhumeng ,
  • WANG Xiaochang ,
  • FENG Haiqiang ,
  • LIN Jie
Expand
  • 1. The Key Laboratory for Quality Improvement of Agricultural Product of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China;;
    2. Institute of Tea Science, Zhejiang University, Hangzhou 310058, China;
    3. Planting Administration Bureau of Zhejiang Province, Hangzhou 310020, China

Received date: 2020-09-02

  Revised date: 2020-10-26

  Online published: 2021-04-13

Abstract

Green tea is the tea with the largest variety and output in China. Its appearance is an important basis for its classification. Image classification is one of the core technologies of computer vision, but its application in tea field is almost blank. Tea recognition still relies on the sensory evaluation methods by experts. This study collected 1713 pictures of 8 kinds of green tea (Lishui Xiangcha, Xinyang Maojian, Lu'an Guapian, Taiping Houkui, Anji Baicha, Biluochun, Zhuyeqing and Longjing). Based on the convolutional neural network, we explored the effects of ResNet model depth from the perspectives of model convergence speed, size, efficiency and identification balance. Finally, the ResNet-18 and SGD optimization algorithms were selected and a deep learning model was established to distinguish 8 kinds of green tea. The accuracy reached 90.99%, the recognition time of the single picture was only 0.098 s, and the model size was 43.7 MB. This paper provided the foundation for constructing a tea visual recognition model and applying it to the mobile terminals and provided a new accurate and efficient method for tea recognition.

Cite this article

ZHANG Yi , ZHAO Zhumeng , WANG Xiaochang , FENG Haiqiang , LIN Jie . Construction of Green Tea Recognition Model Based on ResNet Convolutional Neural Network[J]. Journal of Tea Science, 2021 , 41(2) : 261 -271 . DOI: 10.13305/j.cnki.jts.2021.02.008

References

[1] 张颖彬, 刘栩, 鲁成银. 中国茶叶感官审评术语的形成与发展现状[J]. 茶叶科学, 2019, 39(2): 123-130.
Zhang Y B, Liu X, Lu C Y.The development process and trend of Chinese tea comprehensive processing industry[J]. Journal of Tea Science, 2019, 39(2): 123-130.
[2] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87.
Huang F, Liu F, Wang Y.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87.
[3] 傅隆生, 宋珍珍, Zhang Xin, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120.
Fu L S, Song Z Z, Zhang X, et al.Applications and research progress of deep learning in agriculture[J]. Journal of China Agricultural University, 2020, 25(2): 105-120.
[4] 严俊, 林刚, 赖国亮, 等. 测色技术在炒青绿茶品质评价中的应用研究[J]. 食品科学, 1996(7): 21-24.
Yan J, Lin G, Lai G L, et al.Study on the application of color measurement technology in evaluating the quality of roasted green tea[J]. Food Science, 1996(7): 21-24.
[5] 龙立梅, 宋沙沙, 李柰, 等. 3种名优绿茶特征香气成分的比较及种类判别分析[J]. 食品科学, 2015, 36(2): 114-119.
Long L M, Song S S, Li N, et al.Comparisons of characteristic aroma components and cultivar discriminant analysis of three varieties of famous green tea[J]. Food Science, 2015, 36(2): 114-119.
[6] 赵杰文, 郭志明, 陈全胜. 基于HPLC和模式识别的绿茶分类[J]. 江苏大学学报(自然科学版), 2010(3): 7-11.
Zhao J W, Guo Z M, Chen Q S.Identification of green teas by HPLC and pattern recognition[J]. Proceedings of the Jiangsu University (Natural Science), 2010(3): 7-11.
[7] 范方媛, 徐鹏程, 李春霖, 等. 基于HPLC多元指纹图谱的龙井茶产地判别研究[J]. 中国食品学报, 2019, 19(10): 278-285.
Fan F Y, Xu P C, Li C L, et al.Studies on geographical discrimination of Longjing teas based on multiple HPLC fingerprints[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 278-285.
[8] 门洪, 宁珂, 张艳平, 等. 基于FCM-SVM的差分脉冲伏安电子舌用于对绿茶的识别[J]. 中国农机化学报, 2013, 34(5): 201-205.
Men H, Ning K, Zhang Y P, et al.Classification of green tea using differential pulse voltammetry electronic tongue based on FCM-SVM[J]. Chinese Journal of Agricultural Machinery Chemistry, 2013, 34(5): 201-205.
[9] 于亚萍, 赵辉, 杨仁杰, 等. 伏安型电子舌对不同种类绿茶的辨识[J]. 食品工业, 2018, 39(11): 209-213.
Yu Y P, Zhao H, Yang R J, et al.Idenfication of green tea using voltammetric electronic tongue[J]. Food Industry, 2018, 39(11): 209-213.
[10] 蒋帆, 乔欣, 郑华军, 等. 基于高光谱分析技术的机炒龙井茶等级识别方法[J]. 农业工程学报, 2011, 27(7): 343-348.
Jiang F, Qiao X, Zheng H J, et al.Grade discrimination of machine-fried Longjing tea based on hyperspectral technology[J]. Agricultural Engineering, 2011, 27(7): 343-348.
[11] 林新, 牛智有. 基于近红外光谱茶叶种类的快速识别[J]. 华中农业大学学报, 2008(2): 166-170.
Lin X, Niu Z Y.Fast discrimination of tea species based on Near Infrared Spectroscopy (NIRS)[J]. Journal of Huazhong Agricultural University, 2008(2): 166-170.
[12] 巴桂. 基于卷积神经网络的图像分类算法[J]. 电脑与信息技术, 2020, 28(1): 1-3.
Ba G.Image classification method Based on convolution neural network[J]. Computer and Information Technology, 2020, 28(1): 1-3.
[13] 王伟凝, 王励, 赵明权, 等. 基于并行深度卷积神经网络的图像美感分类[J]. 自动化学报, 2016, 42(6): 904-914.
Wang W N, Wang L, Zhao M Q, et al.Image aesthetic classification using parallel deep convolutional neural networks[J]. Journal of Automation, 2016, 42(6): 904-914.
[14] 黄斌, 卢金金, 王建华, 等. 基于深度卷积神经网络的物体识别算法[J]. 计算机应用, 2016(12): 3333-3340.
Huang B, Lu J J, Wang J H, et al.Object recognition algorithm based on deep convolution neural networks[J]. Computer Applications, 2016(12): 3333-3340.
[15] Cai Y, Yang M, Jun L I.Multiclass classification based on a deep convolutional[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(11): 930-939.
[16] 詹曙, 梁植程, 谢栋栋. 前列腺磁共振图像分割的反卷积神经网络方法[J]. 中国图象图形学报, 2017, 22(4): 516-522.
Zhan S, Liang Z C, Xie D D.Deconvolutional neural network for prostate MRI segmentation[J]. Chinese Journal of Image and Graphics, 2017, 22(4): 516-522.
[17] 胡挺, 祝永新, 田犁, 等. 面向移动平台的轻量级卷积神经网络架构[J]. 计算机工程, 2019, 45(1): 17-22.
Hu T, Zhu Y X, Tian L, et al.Lightweight convolutional neural network architecture for mobile platforms[J]. Computer Engineering, 2019, 45(1): 17-22.
[18] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
Lu H T, Zhang Q C.Applications of deep convolutional neural network in computer vision[J]. Data acquisition and processing, 2016, 31(1): 1-17.
[19] Wu L, Liu Z, Bera T, et al.A deep learning model to recognize food contaminating beetle species based on elytra fragments[J]. Computers and Electronics in Agriculture, 2019, 166: 105002. doi: 10.1016/j.compag.2019.105002.
[20] Yahya Altuntaş, Zafer Cömert, Kocamaz A F.Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach[J]. Computers and Electronics in Agriculture, 2019, 163: 1-11.
[21] 张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法[J]. 计算机辅助设计与图形学学报, 2018, 30(1): 90-99.
Zhang P, Xu X N, Wang H W, et al.Computer-aided lung cancer diagnosis approaches based on deep learning[J]. Journal of computer-aided design, 2018, 30(1): 90-99.
[22] 赵树枫, 周亮, 罗双虎, 等. 基于稀疏卷积神经网络的考生识别算法[J]. 现代电子技术, 2019, 42(13): 61-64.
Zhao S F, Zhou L, Luo S H, et al.Examinee recognition algorithm based on sparse convolutional neural network[J]. Modern Electronics Technology, 2019, 42(13): 61-64.
[23] 孙震笙, 柳鹏, 余涛, 等. 利用卷积神经网络对GF-3输电塔的检测与分类[J]. 遥感信息, 2019, 34(5): 88-97.
Sun Z S, Liu P, Yu T, et al.Electricity pylon detection and classification for GF-3 imagery using deep convolutional neural networks[J]. Remote Sensing Information, 2019, 34(5): 88-97.
[24] 程文博, 张云, 周华民, 等. 基于卷积神经网络的注塑制品短射缺陷识别[J]. 塑料工业, 2015(7): 31-34.
Cheng W B, Zhang Y, Zhou H M, et al.The short shot defect recognition of injection molded plastics based on convolution neural network[J]. Plastics Industry, 2015(7): 31-34.
[25] 冯兴杰, 张志伟, 史金钏. 基于卷积神经网络和注意力模型的文本情感分析[J]. 计算机应用研究, 2018, 35(5): 1434-1436.
Feng X J, Zhang Z W, Shi J C.Text sentiment analysis based on convolutional neural networks and attention model[J]. Computer Applications Research, 2018, 35(5): 1434-1436.
[26] Chen J, Liu Q, Gao L W.Visual tea leaf disease recognition using a convolutional neural network model[J]. Symmetry, 2019, 11(3): 343.
[27] Borah S, Hines E L, Bhuyan M.Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules[J]. Journal of Food Engineering, 2007, 79(2): 629-639.
[28] 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58.
Gao Z Y, Wang A, Liu Y, et al.Intelligent fresh-tea-leaves sorting system research based on convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58.
[29] 葛程, 孙国强. 基于卷积神经网络的图像分类研究[J]. 软件导刊, 2018, 17(10): 27-31.
Ge C, Sun G Q.Image classification based on convolution neural network[J]. Software Guide, 2018, 17(10): 27-31.
[30] 杜云梅, 黄帅, 梁会营. 基于深度卷积神经网络的脑电图异常检测[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 122-128.
Du Y M, Huang S, Liang H Y.The detection of anomaly in electroencephalogram with deep convolutional neural networks[J]. Journal of South China Normal University (Natural Science), 2020, 52(2): 122-128.
[31] He K, Zhang X, Ren S, et al.Deep residual learning for image recognition[J]. Computer Vision and Pattern Recognition, 2016: 770-778.
[32] Hao X, Zhang G, Ma S.Deep learning[J]. International Journal of Semantic Computing, 2016, 10(3): 417-439.
[33] Zhang S, Zhang S, Zhang C, et al.Cucumber leaf disease identification with global pooling dilated convolutional neural network[J]. Computers and Electronics in Agriculture, 2019, 162: 422-430.
[34] 袁银. 基于深度学习的植物图像识别方法研究[J]. 现代农业科技, 2017, 709(23): 278-280.
Yuan Y.Research on plant image recognition method based on depth learning[J]. Modern Agricultural Science and Technology, 2017, 709(23): 278-280.
[35] 胡挺, 祝永新, 田犁, 等. 面向移动平台的轻量级卷积神经网络架构[J]. 计算机工程, 2019, 45(1): 17-22.
Hu T, Zhu Y X, Tian L, et al.Lightweight convolutional neural network architecture for mobile platforms[J]. Computer Engineering, 2019, 45(1): 17-22.
[36] 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204.
Liu Y, Feng Q, Wang S Z.Plant disease identification method based on lightweight CNN and mobile application[J]. Agricultural Engineering, 2019, 35(17): 194-204.
[37] Barbedo J A.Plant disease identification from individual lesions and spots using deep learning[J]. Bisoystems Engineering, 2019, 180: 96. doi: 10.1016/j.biosystemseng.2019.02.002.
[38] 王文成, 蒋慧, 乔倩, 等. 基于ResNet50网络的十种鱼类图像分类识别研究[J]. 农村经济与科技, 2019, 30(19): 60-62.
Wang W C, Jiang H, Qiao Q, et al.Study on classification and recognition of ten fish images based on resnet 50 network[J]. Rural Economics and Technology, 2019, 30(19): 60-62.
[39] 徐岩, 刘林, 李中远, 等. 基于卷积神经网络的玉米品种识别[J]. 江苏农业学报, 2020, 36(1): 18-23.
Xu Y, Liu L, Li Z Y, et al.Recognition of maize varieties based on convolutional neural network[J]. Jiangsu Agricultural Journal, 2020, 36(1): 18-23.
[40] 袁培森, 黎薇, 任守纲, 等. 基于卷积神经网络的菊花花型和品种识别[J]. 农业工程学报, 2018, 34(5): 152-158
Yuan P S, Li W, Ren S G, et al.Recognition for flower type and variety of chrysanthemum with convolutional neural network[J]. Agricultural Engineering, 2018, 34(5): 152-158.
[41] Tan C, Wu C, Huang Y, et al.Identification of different species of Zanthoxyli Pericarpium based on convolution neural network[J]. PLoS ONE, 2020, 15(4): e0230287. doi: 10.1371/journal.pone.0230287.
[42] 邱津怡, 罗俊, 李秀, 等. 基于卷积神经网络的多尺度葡萄图像识别方法[J]. 计算机应用, 2019, 39(10): 2930-2936.
Qiu J Y, Luo J, Li X, et al.Multi-scale grape image recognition method based on convolutional neural network[J]. Computer Applications, 2019, 39(10): 2930-2936.
[43] Xue W, Hu X, Wei Z, et al.A fast and easy method for predicting agricultural waste compost maturity by image-based deep learning[J]. Bioresource Technology, 2019, 290: 121761. doi: 10.1016/j.biortech.2019.121761.
Outlines

/