Welcome to Journal of Tea Science,Today is
Research Paper

Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering

  • LIN Xinying ,
  • WANG Pengjie ,
  • CHEN Xuejin ,
  • GUO Yongchun ,
  • GU Mengya ,
  • ZHENG Yucheng ,
  • YE Naixing
Expand
  • College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science at Universities in Fujian, Fuzhou 350002, China

Received date: 2020-11-17

  Revised date: 2021-01-09

  Online published: 2021-08-12

Abstract

Aliphatic compounds are an important part of plant aromatic substances and play an important role in the composition of white tea aroma. This study used bioinformatics methods to identify the LOX gene family in the chromosome-level tea plant genome database, and obtained 12 tea plant LOX gene family members, named CsLOX1-CsLOX12. The 12 tea plant LOXs are mainly located in the cytoplasm or chloroplast. The encoded proteins have the same characteristic domains and conserved motifs. Phylogenetic tree analysis shows that the LOX gene family is divided into two subfamilies: 9-LOX and 13-LOX. CsLOX2, CsLOX3, CsLOX4, and CsLOX7 belong to 9-LOX subtypes, and the rest belong to 13-LOX subtypes. Gene structure analysis shows that CsLOX1 contains 8 exons, the rest contain 9 exons. The transcriptome data analysis of different tissues shows that the family genes are highly expressed in the tender and mature leaves of tea plants. The upstream promoter region analysis finds a large number of cis-acting elements closely related to plant development, light response, hormone and stress response. Fluorescence quantitative PCR detection reveals that the CsLOX genes were expressed to varying degrees under drought, low temperature and MeJA hormone treatment. Under the treatment of different withering time of white tea, the expression levels of CsLOX1, CsLOX3, CsLOX5, CsLOX7, CsLOX8, CsLOX9, CsLOX11 and CsLOX12 were induced, with the peaks at 4 h (up to 27-fold increase). The results of this study show that members of the CsLOX gene family participate in the regulation of the formation of aliphatic aromas during the process of white tea withering, laying a foundation for understanding the molecular mechanism of aroma formation during tea processing.

Cite this article

LIN Xinying , WANG Pengjie , CHEN Xuejin , GUO Yongchun , GU Mengya , ZHENG Yucheng , YE Naixing . Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering[J]. Journal of Tea Science, 2021 , 41(4) : 482 -496 . DOI: 10.13305/j.cnki.jts.2021.04.004

References

[1] Jansen C K, Hofheinz R, Vogel R, et al.Stereocontrol of arachidonic acidoxygenation by vertebrate lipoxygenases: newly cloned zebrafish lipoxygenase 1 does notfollow the Ala-versus-Gly concept[J]. Journal of Biological Chemistry, 2011, 286(43): 37804-37812.
[2] Michael N A.Biochemistry of lipoxygenase in relation to food quality[J]. Critical Reviews in Food Science and Nutrition, 1977, 9(1): 1-40.
[3] Siedow J.Plant lipoxygenase: structure and function[J]. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42: 145-188.
[4] 曹嵩晓, 张冲, 汤雨凡, 等. 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用[J]. 植物生理学报, 2014, 50(8): 1096-1108.
Cao S X, Zhang C, Tang Y F, et al.Protein characteristic of the plant lipoxygenase and the function on fruit ripening and senescence and adversity stress[J]. Plant Physiology Journal, 2014, 50(8): 1096-1108.
[5] Podolyan A, White J, Jordan B, et al.Identification of the lipoxygenase gene famliy from Vitis vinifera and biochemical characterisation of two 13-lipoxygenase expressed in grape berries of Sauvignon Blanc[J]. Functional Plant Biology, 2010, 37(8): 767-784.
[6] Chen Z, Chen D M, Chu W Y, et al.Retention and molecular evolution of lipoxygenase genes in modern rosid plant[J]. Frontiers in Genetics, 2016, 7: 176. doi: 10.3389/fgene.2016.00176.
[7] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158.
[8] Chen Q C, Zhu Y, Dai W D, et al.Aroma formation and dynamic changes during white tea processing[J]. Food Chemistry, 2019, 274: 915-924.
[9] Zhu J Y, Wang Z, Wang X W, et al.Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis)[J]. Plant Cell Physiol, 2018, 59(9): 1765-1781.
[10] Feussner I, Wasternack C.The lipoxygenase pathway[J]. Annual Review of Plant Biology, 2002 (53): 275-297.
[11] 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 145-146.
Wan X C, Xia T.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015: 145-146.
[12] 高晨, 郑玉成, 周珍, 等. 茶树乙醇脱氢酶基因CsADH2的克隆与表达分析[J]. 福建农业学报, 2018, 33(12): 1257-1263.
Gao C, Zheng Y C, Zhou Z,et al.Cloning and expression of CsADH2 in tea plant (Camellia sinensis)[J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1257-1263.
[13] 周子维, 常笑君, 游芳宁, 等. 茶树脂肪氧合酶(LOX)基因家族成员的分子进化及密码子偏好性分析[J]. 中国农业科技导报, 2017, 19(12): 43-51.
Zhou Z W, Chang X J, You F N, et al.Analysis of molecular evolution and codon bias of lipoxygenase (LOX) gene family in tea tree[J]. Journal of Agricultural Science and Technology, 2017, 19(12):43-51.
[14] 王鹏杰, 陈丹, 曹红利, 等. 茶树甲羟戊酸焦磷酸脱羧酶基因CsMVD的克隆与表达分析[J]. 西北植物学报, 2017, 37(12): 2342-2349.
Wang P J, Chen D, Cao H L, et al.Cloning and expression of mevalonate diphosphate decarboxylase gene CsMVD in tea plant (Camellia sinensis)[J]. Acts Botanica Boreali-Occidentalia Sinic, 2017, 37(12): 2342-2349.
[15] 郭永春, 王鹏杰, 陈笛, 等. 茶树SRO基因家族的鉴定及表达分析[J]. 茶叶科学, 2019, 39(4): 392-402.
Guo Y C, Wang P J, Chen D, et al.Genome-wide identification and expression analysis of SRO gene family in Camellia sinensis[J]. Journal of Tea Science, 2019, 39(4): 392-402.
[16] Xia E H, Zhang H B, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6): 866-877.
[17] Hall B G.Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 2013, 30(5): 1229-1235.
[18] Hu B, Jin J P, Guo A Y, et al.GDS2.0: an upgraded.gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[19] Bailey T L, Boden M, Buske F A, et al.MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: W202-W208.
[20] Lescot M.PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.
[21] Wang P J, Zheng Y C, Guo Y C, et al.Identifcation, expression, and putative target gene analysis of nuclear factor-Y (NF-Y) transcription factors in tea plant (Camellia sinensis)[J]. Planta, 2019, 250: 1671-1686.
[22] Wang J, Marowsky N C, Fan C.Divergence of gene body DNA methylation and evolution of plant duplicate genes[J]. Plos ONE, 2014, 9(10): e110357. doi: 10.1371/journal.pone.0110357.
[23] Liao Y, Gordon K S, Shi W, et al.featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930.
[24] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method[J]. Methods, 2001, 25(4): 402-408.
[25] Cao S, Chen H, Zhang C, et al.Heterologous expression and biochemical characterization of two lipoxygenases in oriental melon, Cucumis melo var. makuwa Makino[J]. Plos ONE, 2016, 11(4): e0153801. doi: 10.1371/journal.pone.0153801.
[26] 朱利利, 庆军, 杜庆鑫, 等. 杜仲脂氧合酶基因家族全基因组鉴定及其表达特性研究[J]. 植物研究, 2019, 39(6): 927-934.
Zhu L L, Qin J, Du Q X, et al.Genome-wide identification and expression characteristics of LOX gene family in Eucommia ulmoides[J]. Bulletin of Botanical Research, 2019, 39(6): 927-934.
[27] Kolomiets M V, Hannapel D J, Chen H, et al.Lipoxygenase is involved in the control of potato tuber development[J]. Plant Cell, 2001, 13: 613-626.
[28] Vellosillo T, Martínez M, López M A, et al.Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade[J]. Plant Cell, 2007, 19(3): 831-846.
[29] Chen G P, Hackett R, Walker D, et al.Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology, 2004, 136: 2641-2651.
[30] 陈雪津, 王鹏杰, 林馨颖, 等. 白茶萎凋过程萜烯类合成相关基因的鉴定和表达分析[J]. 茶叶科学, 2020, 40(3): 363-374.
Chen X J, Wang P J, Lin X Y, et al.Identification and expression analysis of terpene synthesis related genes during the withering of white tea[J]. Journal of Tea Science, 2020, 40(3): 363-374.
[31] Zhang B, Chen K S, Judith B, et al.Differential expression within the LOX gene family in ripening kiwifruit[J]. J Exp Bot, 2006, 57: 3825-3836.
[32] Zhang B, Sben J Y, Wei W W, et al.Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening[J]. Journal Agriculture Food Chemistry, 2010, 58(10): 6157-6165.
[33] Fu X, Chen Y, Mei X, et al.Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength[J]. Science Reports, 2015, 5: 16858.
[34] 王阳明, 刘新春, 陈虎城, 等. 茶树脂氧合酶CsLOX3基因启动子的克隆及其顺式作用元件的分析[J]. 分子植物育种, 2018, 16(23): 7644-7649.
Wang Y M, Liu X C, Chen H C, et al.Cloning and cis-elements analysis of CsLOX3 promoter from tea plants[J]. Molecular Plant Breeding, 2018, 16(23): 7644-7649.
Outlines

/