Deep learning has been widely used in intelligent identification in the progress of real-time monitoring of crop pests. Based on the identification model of tea leafhopper, Empoasca onukii, the application of deep learning in field leafhopper recognition was introduced to improve the precision of field population investigation of E. onukii. In this paper, a method of identification and count of E. onukii in tea garden was designed. Firstly, yellow sticky card was used to attract tea leafhoppers, and images of cards were collected by camera and uploaded to the web server. Then, target detection algorithm deployed by the server was used to identify and count the leafhoppers in the images. Through algorithm screening, YOLOv3 was determined as the recognition algorithm, and the improved soft-NMS was used to replace the original NMS. K-means clustering method was used to calculate the size of the new prior frame, so as to improve the speed and precision of YOLOv3. The results show that the average precision of the optimized algorithm could reach more than 95.35% comparing with the real number of leafhoppers on the sticky card. Therefore, the combination of the sticky card trapping, target recognition algorithm and internet of things technology could realize the real-time monitoring of population for E. onukii, which could provide a reference for other insects with color preference and integrated pest management in tea gardens.
BIAN Lei
,
HE Xudong
,
JI Huihua
,
CAI Xiaoming
,
LUO Zongxiu
,
CHEN Huacai
,
CHEN Zongmao
. Research and Application of Intelligent Identification of Empoasca onukii Based on Machine Vision[J]. Journal of Tea Science, 2022
, 42(3)
: 376
-386
.
DOI: 10.13305/j.cnki.jts.20220506.001
[1] Kogan M.Integrated pest management: historical perspectives and contemporary developments[J]. Annual Review of Entomology, 1998, 43(1): 243-270.
[2] 吴孔明, 陆宴辉, 王振营. 我国农业害虫综合防治研究现状与展望[J]. 昆虫知识, 2009, 46(6): 831-836.
Wu K M, Lu Y H, Wang Z Y.Advance in integrated pest management of crops in China[J]. Chinese Bulletin of Entomology, 2009, 46(6): 831-836.
[3] 中国茶叶学会标准化工作委员会. 茶树主要害虫绿色防控技术规程: T/CTSS 37—2021 [S/OL]. [2021-12-20]. http://down.foodmate.net/standard/yulan.php?itemid=115353.
Standardization Committee of China Tea Science Society. Green controlling technical regulations for major pests of tea plant: T/CTSS 37—2021 [S/OL]. [2021-12-20]. http://down.foodmate.net/standard/yulan.php?itemid=115353.
[4] Khanna A, Kaur S.Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture[J]. Computers and Electronics in Agriculture, 2019, 157: 218-231.
[5] Bian L, Sun X L, Luo Z X, et al.Design and selection of trap color for capture of the tea leafhopper, Empoascavitis, by orthogonal optimization[J]. Entomologia Experimentalis et Applicata, 2014, 151(3): 247-258.
[6] Bian L, Cai X M, Luo Z X, et al.Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves[J]. Journal of Economic Entomology, 2018, 111(2): 629-636.
[7] 封洪强, 姚青. 农业害虫自动识别与监测技术[J]. 植物保护, 2018, 44(5): 127-133.
Feng H Q, Yao Q.Automatic identification and monitoring technology of agricultural pests[J]. Plant Protection, 2018, 44(5): 127-133.
[8] 姚青, 吴叔珍, 蒯乃阳, 等. 基于改进CornerNet的水稻灯诱飞虱自动检测方法构建与验证[J]. 农业工程学报, 2021, 37(7): 183-189.
Yao Q, Wu S Z, Kuai N Y, et al.Automatic detection of rice planthoppers through light-trap insect images using improved Corner Net[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 183-189.
[9] 王茂林, 荣二花, 张利军, 等. 基于图像处理的蓟马计数方法研究[J]. 山西农业科学, 2020, 48(5): 812-816.
Wang M L, Rong E H, Zhang L J, et al, Study on counting Thripidae thysanoptera based on image processing[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(5): 812-816.
[10] 李正飞. 基于小波变换的图像增强技术研究[J]. 机械工程与自动化, 2009(2): 15-17.
Li Z F.Image enhancement method based on wavelet transform[J]. Mechanical Engineering & Automation, 2009(2): 15-17.
[11] 张江勇. 基于深度学习的动车关键部位故障图像检测[D]. 成都: 电子科技大学, 2019.
Zhang J Y.Fault detection of emus based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[12] 彭宜. 基于残差网络和随机森林的音频识别方法研究[D]. 武汉: 武汉科技大学, 2019.
Peng Y.Research on audio recognition method based on residual network and random forest [D]. Wuhan: Wuhan University of Science and Technology, 2019.
[13] Girshick R.Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: 2015.
[14] Ren S Q, He K M, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[15] Liu W, Anguelov D, Erhan D, et al.SSD: single shot multibox detector[M]//Leibe B, Matas J, Sebe N, et al. Lecture notes in computer science. Cham: Springer, 2016: 21-37.
[16] Redmon J, Farhadi A.YOLOv3: an incremental improvement[J]. Eprint ArXiv, 2018: 1804.02767. doi: 10.48550/arXiv.1804.02767.
[17] Huang J, Zhang H, Wang L, et al.Improved YOLOv3 Model for miniature camera detection[J]. Optics and Laser Technology, 2021, 142. doi: 10.1016/j.optlastec.2021.107133.
[18] Bodla N, Singh B, Chellappa R, et al.Soft-NMS-improving object detection with one line of code[J]. Eprint ArXiv, 2017: 1704.04503. doi: 10.48550/arXiv.1704.04503.
[19] Redmon J, Farhadi A.YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: 2017.
[20] 边磊, 孙晓玲, 陈宗懋. 假眼小绿叶蝉的日飞行活动性及成虫飞行能力的研究[J]. 茶叶科学, 2014, 34(3): 248-252.
Bian L, Sun X L, Chen Z M.Studies on daily flight activity and adult flight capacity of Empoasca vitis Göthe[J]. Journal of Tea Science, 2014, 34(3): 248-252.
[21] Kim K N, Huang Q Y, Lei C L.Advances in insect phototaxis and application to pest management: a review[J]. Pest Management Science, 2019, 75(12): 3135-3143.
[22] Shimoda M, Honda K.Insect reactions to light and its applications to pest management[J]. Applied Entomology and Zoology, 2013, 48(4): 413-421.
[23] Rodriguez-Saona C R, Byers J A, Schiffhauer D. Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera: Cicadellidae) and non-target arthropods in cranberry bogs[J]. Crop Protection, 2012, 40: 132-144.
[24] 杨智辉. 黄色诱虫板对茶果园主要害益虫的诱杀作用调查[J]. 现代农业科技, 2017(15): 91-93.
Yang Z H.Investigation on the trapping and killing effect of yellow insect traps on the main harmful and beneficial insects in tea orchards[J]. Modern Agricultural Science and Technology, 2017(15): 91-93.
[25] 吴孔明. 中国农作物病虫害防控科技的发展方向[J]. 农学学报, 2018, 8(1): 35-38.
Wu K M.Development direction of crop pest control science and technology in China[J]. Journal of Agriculture, 2018, 8(1): 35-38.
[26] 陈宗懋, 蔡晓明, 周利, 等. 中国茶园有害生物防控40年[J]. 中国茶叶, 2020, 42(1): 1-8.
Chen Z M, Cai X M, Zhou L, et al.Developments on tea plant pest control in past 40 years in China[J]. China Tea, 2020, 42(1): 1-8.