Welcome to Journal of Tea Science,Today is
Research Paper

The Complete Mitochondrial Genome Sequence and Phylogenetic Analysis of Thosea sinensis

  • JIANG Hongyan ,
  • CHEN Shichun ,
  • LIAO Shuran ,
  • CHEN Tingxu ,
  • YANG Puxiang ,
  • XIE Xiaoqun ,
  • WANG Xiaoqing
Expand
  • 1. Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing 402160, China;
    2. Jiangxi Cash Crops Research Institute, Nanchang 330203, China

Received date: 2023-04-13

  Revised date: 2023-05-30

  Online published: 2023-08-24

Abstract

Thosea sinensis is an important agricultural and forestry pest in China with characteristics of wide distribution, polyphagy, and high damage. The purpose of this study was to report the mitochondrial genome of T. sinensis collected from Jiangxi, investigate its diversity and difference, and explore the evolutionary characteristics of Limacodidae insects. After Sanger sequencing, the complete mitochondrial genome sequence of T. sinensis was obtained by splicing, correcting and annotating, and the phylogenetic tree of 26 moth species in 17 families of Lepidoptera was constructed based on the protein sequences. The complete mitochondrial genome sequence was 15 540 bp in size, encoding 37 genes, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNA genes, and 1 control region of 425 bp. The gene arrangement is the same as that of the Ditrysia moths. By comparing the similarity of the full sequence and protein-coding genes of the mitochondrial genomes with other moths, the results show that the similarity between T. sinensis and Iragoides fasciata was the highest, and that between T. sinensis and Parasa consocia was the lowest. Phylogenetic analysis shows that the closest relationship of T. sinensis was with Iragoides fasciata, followed by Narosa nigrisigna, and all the moths from Lepidoptera were clustered into one branch. This study provided a scientific basis for further research on the origin, genetic diversity, migration, and differentiation of T. sinensis, as well as its resistance to pesticides.

Cite this article

JIANG Hongyan , CHEN Shichun , LIAO Shuran , CHEN Tingxu , YANG Puxiang , XIE Xiaoqun , WANG Xiaoqing . The Complete Mitochondrial Genome Sequence and Phylogenetic Analysis of Thosea sinensis[J]. Journal of Tea Science, 2023 , 43(4) : 460 -472 . DOI: 10.13305/j.cnki.jts.2023.04.002

References

[1] 肖强, 唐美君, 周孝贵. 茶树病虫和天敌名录[M]. 北京: 中国农业出版社, 2020: 104.
Xiao Q, Tang M J, Zhou X G.List of tea pests and natural enemies [M]. Beijing: China Agriculture Press, 2020: 104.
[2] 张汉鹄, 谭济才. 中国茶树害虫及其无公害治理[M]. 合肥: 安徽科学技术出版社, 2004.
Zhang H H, Tan J C.Chinese tea pests and their pollution-free control [M]. Hefei: Anhui Science and Technology Press, 2004.
[3] 谢小群, 贺望兴, 石旭平, 等. 三种微生物农药对扁刺蛾幼虫的毒力试验[J]. 茶叶通讯, 2020, 47(4): 617-622.
Xie X Q, He W X, Shi X P, et al.Toxicity test of three kinds of microbial pesticides on Thosea senensis Walker[J]. Journal of Tea Communication, 2020, 47(4): 617-622.
[4] 崔林, 刘月生. 茶园扁刺蛾的发生及防治[J]. 中国茶叶, 2005, 27(2): 21.
Cui L, Liu Y S.Occurrence and control of Thosea senensis in tea garden[J]. Chinese Tea, 2005, 27(2): 21.
[5] 王维, 孟智启, 石放雄, 等. 鳞翅目昆虫比较线粒体基因组学研究进展[J]. 科学通报, 2013, 58(30): 3017-3029.
Wang W, Meng Z Q, Shi F X, et al.Advances in comparative mitochondrial genomics of Lepidoptera[J]. Chinese Science Bulletin, 2013, 58(30): 3017-3029.
[6] 魏书军, 陈学新. 昆虫比较线粒体基因组学研究进展[J]. 应用昆虫学报, 2011, 48(6): 1573-1585.
Wei S J, Chen X X.Advances in comparative mitochondrial genomics in insects[J]. Journal of Applied Entomology, 2011, 48(6): 1573-1585.
[7] 古丽扎尔·阿不都克力木, 张秀英, 苏比奴尔·艾力, 等. 中国鳞翅目新物种2021年年度报告[J]. 生物多样性, 2022, 30(8): 37-45.
Gulzar A, Zhang X Y, Subinur E, et al.Annual report of new taxa for Chinese Lepidoptera in 2021[J]. Biodiversity Science, 2022, 30(8): 37-45.
[8] Zhang Z Q.Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness[J]. Zootaxa, 2011, 3148: 1. doi: 10.11646/zootaxa.3148.1.10.
[9] Liu Q N, Xin Z Z, Bian D D, et al.The first complete mitochondrial genome for the subfamily Limacodidae and implications for the higher phylogeny of Lepidoptera[J]. Scientific Reports, 2016, 6(1): 35878. doi: 10.1038/srep35878.
[10] Bian D D, Ye W T, Dai M L, et al.Phylogenetic relationships of Limacodidae and insights into the higher phylogeny of Lepidoptera[J]. International Journal of Biological Macromolecules, 2020, 159: 356-363.
[11] Sun J T, Duan X Z, Hoffmann A A, et al.Mitochondrial variation in small brown planthoppers linked to multiple traits and probably reflecting a complex evolutionary trajectory[J]. Molecular Ecology, 2019, 28(14): 3306-3323.
[12] 贺望兴, 谢小群, 杨普香, 等. 茶园扁刺蛾生防菌筛选、鉴定及其发酵条件优化[J]. 福建农业学报, 2022, 37(11): 1463-1469.
He W X, Xie X Q, Yang P X, et al.Identification and culture optimization of effective biocontrol agent on Thosea senensis for tea plantations[J]. Frujian Journal of Agricultural Sciences, 2022, 37(11): 1463-1469.
[13] 王金昌, 类承凤, 陈俊晖, 等. 扁刺蛾核型多角体病毒新分离株的基因组测序与分析[J]. 病毒学报, 2023, 39(1): 185-198.
Wang J C, Lei C F, Chen J H, et al.Genome sequencing and analyses of a new strain of Thosea sinensis nucleopolyhedrovirus (OxocNPV-Ts)[J]. Chinese Journal of Virology, 2023, 39(1): 185-198.
[14] Bernt M, Donath A, Jühling F, et al.MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319.
[15] Laslett D, Canbäck B.ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences[J]. Bioinformatics, 2008, 24(2): 172-175.
[16] Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5): 955-964.
[17] Xia X H.DAMBE7: new and improved tools for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2018, 35(6): 1550-1552.
[18] Kumar S, Stecher G, Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
[19] Castresana J.Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J]. Molecular Biology and Evolution, 2000, 17(4): 540-552.
[20] Guindon S, Dufayard J F, Lefort V, et al.New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307-321.
[21] Lefort V, Longueville J E, Gascuel O.SMS: smart model selection in PhyML[J]. Molecular Biology and Evolution, 2017, 34(9): 2422-2424.
[22] Cameron S L.Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annual Review of Entomology, 2014, 59(1): 95-117.
[23] Kong W Q, Yang J H.The complete mitochondrial genome of Rondotia menciana (Lepidoptera: Bombycidae)[J]. Journal of Insect Science, 2015, 15(1): 48. doi: 10.1093/jisesa/iev032.
[24] 陈鲁. 鳞翅目昆虫线粒体基因组的结构特征分析[D]. 长沙: 湖南农业大学, 2021.
Chen L.Structural characteristics of mitochondrial genome in Lepidoptera [D]. Changsha: Hunan Agricultural University, 2021.
[25] 张敏, 赵盼, 尹洁, 等. 小红珠绢蝶线粒体基因组特征及基于线粒体基因组的蝶类高级阶元系统发育关系分析[J]. 昆虫学报, 2017, 60(11): 1324-1338.
Zhang M, Zhao P, Yin J, et al.Mitochondrial genome characteristics and phylogenetic relationship analysis of the higher order members of the butterflies based on mitochondrial genome[J]. Acta Entomoloica Sinica, 2017, 60(11): 1324-1338.
[26] Cao S Y, Wu X B, Yan P, et al.Complete nucleotide sequences and gene organization of mitochondrial genome of Bufo gargarizans[J]. Mitochondrion, 2016, 6(4): 186-193.
[27] Liu Q N, Xin Z Z, Zhu X Y, et al.A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome[J]. Biochemical and Biophysical Research Communications, 2017, 489(2): 149-154.
[28] Segovia R, Pett W, Trewick S, et al.Extensive and evolutionarily persistent mitochondrial tRNA editing in velvet worms (Phylum Onychophora)[J]. Molecular Biology and Evolution, 2011, 28(10): 2873-2881.
[29] Lavrov D V, Brown W M, Boore J L.A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius Forficatus[J]. Proceedings of the National Academy of Sciences, 2000, 97(25): 13738-13742.
[30] 杜会聪, 王瑶, 方加兴, 等. 马尾松毛虫线粒体全基因组的测定与分析[J]. 林业科学, 2019, 55(12): 162-172.
Du H C, Wang Y, Fang J X, et al.Sequencing and analysis of the complete mitochondrial genome of Dendrolimus punctatus (Lepidoptera: Lasiocampidae)[J]. Forestry Science, 2019, 55(12): 162-172.
[31] 王瑶, 孔祥波, 张苏芳, 等. 云南松毛虫线粒体基因组全序列测定和分析[J]. 林业科学研究, 2019, 35(5): 11-20.
Wang Y, Kong X B, Zhang S F, et al.Sequencing and analysis of complete mitochondrial genome of Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae)[J]. Forestry Science Research, 2019, 35(5): 11-20.
[32] 杨金宏, 谢满超, 文欣茹, 等. 茶网蝽线粒体基因组全序列测定及系统发育分析[J]. 茶叶科学, 2022, 46(6): 839-850.
Yang J H, Xie M C, Wen X R, et al.The complete mitochondrial genome sequence and phylogenetic analysis of the Stephanitis chinensis[J]. Journal of Tea Science, 2022, 46(6): 839-850.
[33] Li P W, Wang X Q, Chen S C, et al.The complete mitochondrial genome of the tea lace bug, Stephanitis chinensis (Hemiptera: Tingidae)[J]. Mitochondrial DNA Part B, 2017, 2(2): 607-608.
[34] Hua J M, Li M, Dong P Z, et al.Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera)[J]. BMC Genomics, 2008, 9: 610. doi: 10.1186/1471-2164-9-610.
[35] Li H, Liu H Y, Song F, et al.Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta: Hemiptera)[J]. Plos One, 2012, 7(9): e45925. doi: 10.1371/journal.pone.0045925.
[36] Wang Y, Huang X L, Qiao G X.Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae) and phylogenetic implications[J]. Plos One, 2013, 8(10): e77511. doi: 10.1371/journal.pone.0077511.
[37] 郭仲龙, 袁明龙. 半翅目昆虫线粒体基因组学研究进展[J]. 中国科学: 生命科学, 2016, 46(2): 151-166.
Guo Z L, Yuan M L.Research progress of mitochondrial genomes of Hemiptera insects[J]. Scientia Sinica (Vitae), 2016, 46(2): 151-166.
[38] Jiang H Y, Chen S C, Peng P, et al.The complete mitochondrial genome of a slug moth, Narosa nigrisigna (Lepidoptera: Limacodidae)[J]. Mitochondrial DNA Part B, 2019, 4(1): 320-321.
[39] Jiang H Y, Chen S C, Hu X, et al.Characterization of the complete mitochondrial genome of the tea slug moth, Iragoides fasciata (Lepidoptera: Limacodidae)[J]. Mitochondrial DNA Part B, 2022, 7(8): 1545-1547.
[40] Peng S Y, Zhang Y, Zhang X C, et al.Complete mitochondrial genome of Cnidocampa flavescens (Lepidoptera: Limacodidae)[J]. Mitochondrial DNA Part B, 2017, 2(2): 534-535.
[41] 陈晓晓, 袁周伟, 苑晓伟, 等. 叶蝉线粒体基因组全序列结构研究进展[J]. 基因组学与应用生物学, 2020, 39(6): 2565-2577.
Chen X X, Yuan Z W, Yuan X W, et al.Advances in mitochondrial genome complete sequence structure of leafhopper[J]. Genomics and Applied Biology, 2020, 39(6): 2565-2577.
[42] Li X, Wiens J J.Estimating global biodiversity: the role of cryptic insect species[J]. Systematic Biology, 2023, 72(2): 391-403.
[43] 肖强. 茶园害虫“双胞胎”—茶尺蠖和灰茶尺蠖的识别[J]. 中国茶叶, 2019, 41(11): 11-12.
Xiao Q.Identification of "twins" of pests in tea garden-tea inchworm and grey tea inchworm[J]. China Tea, 2019, 41(11): 11-12.
[44] 张家侠, 孙钦玉, 葛超美, 等. 4种性诱剂诱芯对茶园尺蠖的引诱与预测效果[J]. 江苏农业科学, 2018, 46(20): 86-88.
Zhang J X, Sun Q Y, Ge C M, et al.The lure and prediction effect of four kinds of sex attractants on inchworm in tea garden[J]. Jiangsu Agricultural Sciences, 2018, 46(20): 86-88.
[45] Furlong F M.Knowing your enemies: integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests[J]. Insect Science, 2015, 22(1): 6-19.
[46] 颜亨梅, 钟文涛. 动物捕食性天敌摄食分析方法的研究进展[J]. 生命科学研究, 2021, 25(1): 1-8.
Yan H M, Zhong W T.Research progress of feeding analysis methods for predatory animals[J]. Life Science Research, 2021, 25(1): 1-8.
Outlines

/