Welcome to Journal of Tea Science,Today is
Research Paper

Identification of CsPATL Gene Family and Analysis of Upstream Transcriptional Regulation of CsPATL1

  • WANG Jinbo ,
  • XIE Siyi ,
  • DOU Xiangya ,
  • SHEN Xiaohua ,
  • TIAN Na ,
  • LIU Shuoqian
Expand
  • 1. Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Ministry of Education, Changsha 410128, China;
    2. Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China

Received date: 2024-11-07

  Revised date: 2024-12-27

  Online published: 2025-04-30

Abstract

The Patellin (PATL) gene family is essential for plant growth, development and environmental adaptation. This study systematically identified and analyzed the CsPATL gene family in tea plants (Camellia sinensis). Five members of the CsPATL family were identified using a variety of bioinformatics techniques, and the physicochemical characteristics of their protein sequences were analyzed. The results show that the five CsPATL genes encode 232~585 amino acids, their molecular weights are 26.31~64.69 kDa, and their theoretical isoelectric points are 4.65~9.35. The chromosomal localization of these genes and the cis-elements in their promoter sequences were also analyzed in detail, and it was found that these genes were unevenly distributed on four chromosomes, and were mainly involved in phytohormone response, abiotic stress response, and light response, with light-responsive elements occupying a significant proportion in particular. Y1H, EMSA, and dual-luciferase assays confirm that Cshdz7 can directly bind to the CsPATL1 promoter and promote CsPATL1 gene expression. These findings provided a new perspective on the role of the CsPATL family genes in plant developmental regulation of tea plant development.

Cite this article

WANG Jinbo , XIE Siyi , DOU Xiangya , SHEN Xiaohua , TIAN Na , LIU Shuoqian . Identification of CsPATL Gene Family and Analysis of Upstream Transcriptional Regulation of CsPATL1[J]. Journal of Tea Science, 2025 , 45(2) : 191 -200 . DOI: 10.13305/j.cnki.jts.2025.02.005

References

[1] Wu C Y, Tan L, Hooren V M, et al.Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit[J]. Journal of Integrative Plant Biology, 2017, 59(12): 851-865.
[2] Zhou H P, Duan H Q, Liu Y H, et al.Patellin protein family functions in plant development and stress response[J]. Journal of Plant Physiology, 2019, 234: 94-97.
[3] 李琼, 王学路, 苏伟. 拟南芥Patellin2相互作用蛋白的筛选及鉴定[J]. 复旦学报(自然科学版), 2016, 55(5): 614-622.
Li Q, Wang X L, Su W.Identification and validation of theinteraction between patellin2 and CDKB2;2 in Arabidopsis thaliana[J]. Journal of Fudan University (Natural Science), 2016, 55(5): 614-622.
[4] Heide O M.Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species[J]. Scientia Horticulturae, 2008, 115(3): 309-314.
[5] Heide O M.Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species[J]. Journal of Experimental Botany, 2011, 62(15): 5397-5404.
[6] Welling A, Palva E T.Molecular control of cold acclimation in trees[J]. Physiologia Plantarum, 2006, 127(2): 167-181.
[7] Petermant T K, Ohol Y M, Mcreynolds L J, et al.Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides[J]. Plant Physiology, 2004, 136(2): 3080-3094.
[8] Montag K, Hornbergs J, Ivanov R, et al.Phylogenetic analysis of plant multi-domain SEC14-like phosphatidylinositol transfer proteins and structure: function properties of PATELLIN2[J]. Plant Molecular Biology, 2020, 104: 665-678.
[9] Anantharaman V, Aravind L.The GOLD domain, a novel protein module involved in Golgi function and secretion[J]. Genome Biology, 2002, 3(5): 1-7.
[10] Sha A H, Qi Y N, Shan Z H, et al.Identifying patellin-like genes in Glycine max and elucidating their response to phosphorus starvation[J]. Acta Physiologiae Plantarum, 2016, 38: 138. doi: 10.1007/s11738-016-2162-2.
[11] Melicher P, Dvořák P, Řehák J, et al.Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses[J]. Journal of Experimental Botany, 2024, 75(1): 405-421.
[12] Peiro A, Izquierdo-garcia A C, Sanchez-navarro J A, et al. Patellins 3 and 6, two members of the plant patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement[J]. Molecular Plant Pathology, 2014, 15(9): 881-891.
[13] Ariel F D, Manavella P A, Dezar C A, et al.The true story of the HD-Zip family[J]. Trends in Plant Science, 2007, 12(9): 419-426.
[14] Henriksson E, Olsson A S B, Johannesson H, et al. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships[J]. Plant Physiology, 2005, 139(1): 509-518.
[15] Zhang Y, Wan S Q, Xing B C, et al.An HD-Zip transcription factor ArHDZ22 regulates plant height and decreases salt tolerance in Anoectochilus roxburghii[J]. Industrial Crops & Products, 2025, 223: 120251. doi: 10.1016/j.indcrop.2024.120251.
[16] 沈威. 茶树中与逆境相关HD-Zip转录因子的鉴定和功能初步分析[D]. 南京: 南京农业大学, 2019.
Shen W.Identification and preliminary functional analysis of HD-Zip transcription factors relatedin tea plant[D]. Nanjing: Nanjing Agricultural University, 2019.
[17] Shen J Z, Wang Y, Chen C S, et al.Metabolite profiling of tea (Camellia sinensis L.) leaves in winter[J]. Scientia Horticulturae, 2015, 192: 1-9.
[18] Wu Z J, Li X H, Liu Z W, et al.Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis)[J]. Functional & Integrative Genomics, 2015, 15(6): 741-752.
[19] Liu Z H, Gao L Z, Chen Z M, et al.Leading progress on genomics, health benefits and utilization of tea resources in China[J]. Nature, 2019, 566(7742): s15-s19.
[20] 鲁薇, 邬晓龙, 胡贤春, 等. 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024, 44(5): 718-734.
Lu W, Wu X L, Hu X C, et al.Physiological response of tea plants inoculated with Arbuscular mycorrhizal fungi under drought stress[J]. Journal of Tea Science, 2024, 44(5): 718-734.
[21] 余素红, 洪永聪, 曾明森, 等. 分子生物学技术在茶树科学研究中的应用与展望[J]. 茶叶科学技术, 2009(2): 5-10.
Yu S H, Hong Y C, Zeng M S, et al.Application and prospects of molecular biological techniques in scientific research on tea plants[J]. Chaye Kexue Jishu, 2009(2): 5-10.
[22] 李力, 罗盛财, 王飞权, 等. 基于GBS-SNP的武夷茶树(Camellia sinensis, Synonym: Thea bohea L.)遗传分析及标记开发[J]. 茶叶科学, 2023, 43(3): 310-324.
Li L, Luo S C, Wang F Q, et al.Genetic analysis and marker development for Wuyi tea (Camellia sinensis, Synonym: Thea bohea L.) based on GBS-SNP[J]. Journal of Tea Science, 2023, 43(3): 310-324.
[23] 王新超, 马春雷, 杨亚军, 等. 茶树细胞周期蛋白依赖激酶(CsCDK)基因cDNA全长克隆与分析[J]. 园艺学报, 2012, 39(2): 333-342.
Wang X C, Ma C L, Yang Y J, et al.Full-length cDNA cloning and analysis of tea plant cyclin-dependent kinase (CsCDK) gene[J]. Acta Horticulturae Sinica, 2012, 39(2): 333-342.
[24] Tejos R, Rodriguez-Furlán C, Adamowski M, et al. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana[J]. Journal of Cell Science, 2018, 131(2): jcs204198. doi: 10.1242/jcs.204198.
[25] Hussain S, Niu Q F, Qian M J, et al.Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia)[J]. Tree Genetics & Genomes, 2015, 11: 110. doi: 10.1007/s11295-015-0938-y.
[26] Zhao Y X, Medrano L, Ohashi K, et al.HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis[J]. The Plant Cell, 2004, 16(10): 2586-2600.
[27] Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391.
[28] Yan Y L, Jeong S J, Park C E, et al.Effects of extreme temperature on China’s tea production[J]. Environmental Research Letters, 2021, 16(4): 044040. doi: 10.1088/1748-9326/abede6.
[29] Sharif R, Raza A, Chen P, et al.HD-ZIP gene family: potential roles in improving plant growth and regulating stress-responsive mechanisms in plants[J]. Genes, 2021, 12(8): 1256. doi: 10.3390/genes12081256.
[30] Ramachandran P, Carlsbecker A, Etchells J P.Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation[J]. Journal of Experimental Botany, 2017, 68(1): 55-69.
[31] Elhiti M, Stasolla C.Structure and function of homodomain-leucine zipper (HD-Zip) proteins[J]. Plant Signaling & Behavior, 2009, 4(2): 86-88.
[32] 王宏, 李刚波, 张大勇, 等. 植物HD-Zip转录因子的生物学功能[J]. 遗传, 2013, 35(10): 1179-1188.
Wang H, Li G B, Zhang D Y, et al.Biological functions of plant HD-Zip transcription factors[J]. Hereditas (Beijing), 2013, 35(10): 1179-1188.
Outlines

/