[1] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003.
[2] 阮宇成. 茶多酚的组成与茶叶品质[J]. 中国茶叶, 1979, 1(1): 2-5.
Ruan Y C.The composition of tea polyphenols and tea quality[J]. China Tea, 1979, 1(1): 2-5.
[3] 陈椽. 茶业通史[M]. 2版. 北京: 中国农业出版社, 2008.
Chen C.A general history of tea industry [M]. 2nd ed. Beijing: China Agriculture Press, 2008.
[4] 阮宇成. 茶叶提取物中茶多酚测定值的商榷[J]. 中国茶叶, 1995, 17(3): 20-21.
Ruan Y C.Discussion on the determination values of tea polyphenols in tea extracts[J]. China Tea, 1995, 17(3): 20-21.
[5] 阮宇成. 茶叶保健功能的研究及其发展前途[J]. 茶叶, 1994(1): 10-12.
Ruan Y C.Research on the health benefits of tea and its development prospect[J]. Journal of Tea, 1994(1): 10-12.
[6] 于钦明, 郑淇, 杨玉赫. 从“神农尝百草”认知茶的药用价值及其对中医药文化发展的经验研究[J]. 福建茶叶, 2021, 43(9): 41-42.
Yu Q M, Zheng Q, Yang Y H.Research on the medicinal value of tea recognized from “Shennong tasting a hundred herbs” and its experience in the development of traditional chinese medicine culture[J]. Tea in Fujian, 2021, 43(9): 41-42.
[7] 阮宇成. 近三年茶多酚在抗氧化、抗癌研究的简况[J]. 茶叶, 1996(4): 36-37.
Ruan Y C.A Brief situation of tea polyphenols in antioxidant and anti-cancer research in the past three years[J]. Journal of Tea, 1996(4): 36-37.
[8] 阮宇成. 谈谈茶叶开发问题[J]. 福建茶叶, 2002(3): 28.
Ruan Y C.On the issue of tea development[J]. Tea in Fujian, 2002(3): 28.
[9] 鲍军, 洪允祥, 楼建国, 等. 茶黄烷醇类防治动脉粥样硬化的实验研究[J]. 南京中医学院学报, 1989(3): 35-37, 58.
Bao J, Hong Y X, Lou J G, et al.Experimental study on the prevention and treatment of atherosclerosis by tea flavanols[J]. Journal of Nanjing University of Traditional Chinese Medicine, 1989(3): 35-37, 58.
[10] 沈新南, 陆瑞芳, 唐金发, 等. 茶多酚降血脂抗血栓作用的实验研究[J]. 营养学报, 1993(2): 147-151.
Shen X N, Lu R F, Tang J F, et al.Experimental study on the hypolipidemic and antithrombotic effects of tea polyphenols[J]. Acta Nutrimenta Sinica, 1993(2): 147-151.
[11] 杨贤强, 贾之慎, 沈生荣, 等. 茶多酚类毒理学试验及其评价[J]. 浙江农业大学学报, 1992, 18(1): 26-32.
Yang X Q, Jia Z S, Shen S R, et al.Toxicological tests and evaluation of tea polyphenols[J]. Journal of Zhejiang Agricultural University, 1992, 18(1): 26-32.
[12] 杨贤强, 沈生荣, 贾之慎, 等. 茶多酚(TP)清除自由基和抗氧化作用的机理及应用基础研究[J]. 中国茶叶加工, 1994(1): 41-44.
Yang X Q, Shen S R, Jia Z S, et al.Mechanism and applied fundamental research on free radical scavenging and antioxidant effects of tea polyphenols (TP)[J]. China Tea Processing, 1994(1): 41-44.
[13] 陈炳银, 陈红平, 田宝明, 等. 茶多酚作为食品添加剂的应用研究进展[J]. 中国茶叶, 2024, 46(11): 33-44.
Chen B Y, Chen H P, Tian B M, et al.Research progress on the application of tea polyphenols as food additives[J]. China Tea, 2024 ,46(11): 33-44.
[14] 贾之慎, 杨贤强. 茶多酚抗氧化作用的研究与应用[J]. 食品科学, 1990(11): 1-5.
Jia Z S, Yang X Q.Research and application of antioxidant effects of tea polyphenols[J]. Food Science, 1990(11): 1-5.
[15] 全国食品发酵标准化中心、卫生部食品卫生监督检验所. 食品添加剂茶多酚: QB 2154—95[S]. 北京: 中国标准出版社, 1995.
National Center for Standardization of Food Fermentation, Institute of Food Hygiene Supervision and Inspection, Ministry of Health. Food additive—tea polyphenols: QB 2154—95 [S]. Beijing: China Standard Press, 1995.
[16] 杨贤强, 王岳飞, 陈留记. 茶多酚化学[M]. 上海科学技术出版社, 2003.
Yang X Q, Wang Y F, Chen L J.Tea polyphenol chemistry [M]. Shanghai: Shanghai Science and Technology Press, 2003.
[17] 陈宗懋. 茶叶有效成分首次获美国FDA批准为处方药上市[J]. 中国茶叶, 2007, 29(6): 19.
Chen Z M.The active ingredients of tea were approved by the US FDA for the first time as prescription drugs for marketing[J]. China Tea, 2007, 29(6): 19.
[18] 全国茶叶标准化技术委员会(SAC/TC 339). 茶制品-第2部分: 茶多酚: GB/T 31740.2—2015[S]. 北京: 中国标准出版社, 2015.
National Tea Standardization Technical Committee (SAC/TC 339). Tea products—Part 2: tea polyphenols: GB/T 31740.2—2015 [S]. Beijing: China Standard Press, 2015.
[19] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品添加剂茶多酚(又名维多酚): GB 1886.211—2016 [S]. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission of the People's Republic of China. National Food Safety Standard - Food additive —tea polyphenols (also known as vitamin polyphenols): GB 1886.211—2016 [S]. Beijing: China Standard Press, 2016.
[20] Sun J, Dong S X, Li J, et al.A comprehensive review on the effects of green tea and its components on the immune function[J]. Food Science and Human Wellness, 2022, 11(5): 1143-1155.
[21] Chen G J, Chen R C, Chen D, et al.Tea polysaccharides as potential therapeutic options for metabolic diseases[J]. Journal of Agricultural and Food Chemistry, 2018, 67(19): 5350-5360.
[22] de Araújo F F, de Paulo Farias D, Neri-Numa I A, et al. Polyphenols and their applications: an approach in food chemistry and innovation potential[J]. Food Chemistry, 2021, 338: 127535. doi: 10.1016/j.foodchem.2020.127535.
[23] Shi J, Yang G Z, You Q S, et al.Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001—2021)[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(20): 4757-4784.
[24] Kawai K, Tsuno N H, Kitayama J, et al.Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b[J]. Immunopharmacology and Immunotoxicology, 2011, 33(2): 391-397.
[25] Hyun K H, Gil K C, Kim S G, et al.Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model[J]. Journal of Food Science, 2019, 84(4): 920-930.
[26] Liu D D, Li P P, Song S S, et al.Pro-apoptotic effect of epigallo-catechin-3-gallate on B lymphocytes through regulating BAFF/PI3K/Akt/mTOR signaling in rats with collagen-induced arthritis[J]. European Journal of Pharmacology, 2012, 690(1/2/3): 214-225.
[27] Zhang Y T, Cheng L, Liu Y N, et al.The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity[J]. Food Reviews International, 2023, 39(3): 1485-1498.
[28] Zhang R, Liu L L, Wang X W, et al.Dietary tea polyphenols induce changes in immune response and intestinal microbiota in Koi carp, cryprinus carpio[J]. Aquaculture, 2020, 516: 734636. doi: 10.1016/j.aquaculture.2019.734636.
[29] Liu Z B, de Bruijn W J C, Bruins M E, et al. Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro[J]. Journal of Agricultural and Food Chemistry, 2020, 68(36): 9804-9815.
[30] Zhou F, Li Y L, Zhang X, et al.Polyphenols from Fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function[J]. Journal of Agricultural and Food Chemistry, 2021, 69(48): 14530-14543.
[31] 史霄燕. 茶多酚的抗氧化作用及机制[J]. 国外医学药学分册, 1998(4): 196-199.
Shi X Y.The antioxidant effect and mechanism of tea polyphenols[J]. Foreign Medical Sciences Section on Pharmacy, 1998(4): 196-199.
[32] Sies H.Biochemistry of oxidative stress[J]. Angewandte Chemie International Edition in English, 1986, 25(12): 1058-1071.
[33] Qi G Y, Mi Y S, Fan R, et al.Tea polyphenols ameliorate hydrogen peroxide-and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver[J]. RSC Advances, 2017, 7(51): 32198-32208.
[34] Qi G Y, Mi Y S, Wang Y W, et al.Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain[J]. Food & Function, 2017, 8(12): 4421-4432.
[35] Wan C P, Hu X M, Li M X, et al.Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging[J]. Journal of Functional Foods, 2023, 104: 105506. doi: 10.1016/j. jff. 2023.105506.
[36] Yan Z M, Zhong Y Z, Duan Y H, et al.Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition, 2020, 6(2): 115-123.
[37] Trisha A T, Shakil M H, Talukdar S, et al.Tea polyphenols and their preventive measures against cancer: current trends and directions[J]. Foods, 2022, 11(21): 3349. doi: 10.3390/foods11213349.
[38] Shirakami Y, Shimizu M.Possible mechanisms of green tea and its constituents against cancer[J]. Molecules, 2018, 23(9): 2284. doi: 10.3390/molecules23092284.
[39] Kaltschmidt B, Greiner J F W, Kadhim H M, et al. Subunit-specific role of NF-κB in cancer[J]. Biomedicines, 2018, 6(2): 44. doi: 10.3390/biomedicines6020044.
[40] Masuda M, Suzui M, Lim J T E, et al. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction[J]. Journal of Experimental Therapeutics and Oncology, 2002, 2(6): 350-359.
[41] Fujiki H, Suganuma M, Okabe S, et al.Cancer inhibition by green tea[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 402(1/2): 307-310.
[42] Truong V L, Jeong W S.Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness, 2022, 11(3): 502-511.
[43] Chen Y, Cheng S, Dai J G, et al.Molecular mechanisms and applications of tea polyphenols: a narrative review[J]. Journal of Food Biochemistry, 2021, 45(10): e13910. doi: 10.1111/jfbc.13910.
[44] Caban M, Lewandowska U.Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases[J]. Journal of Functional Foods, 2022, 95: 105181. doi: 10.1016/j.jff.2022.105181.
[45] Song Z Y, Zhang X, Hong M Y, et al.Oolong tea polyphenols affect the inflammatory response to improve cognitive function by regulating gut microbiota[J]. Journal of Functional Foods, 2023, 105: 105584. doi: 10.1016/j.jff.2023.105584.
[46] Stillman A, Connors M, Miller M, et al.P-145 oral administration of egcg, a green tea polyphenol, both suppresses and rescues mice from dss-induced colitis[J]. Inflammatory Bowel Diseases, 2016, 22: S54. doi: 10.1097/01.MIB.0000480274.14376.a7.
[47] Wu Z H, Huang S M, Li T T, et al.Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9: 1-22.
[48] Li J, Chen C F, Yang H, et al.Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice[J]. Food Research International, 2021, 141: 110153. doi: 10.1016/j.foodres.2021.110153.
[49] Cardona F, Andrés-Lacueva C, Tulipani S, et al.Benefits of polyphenols on gut microbiota and implications in human health[J]. The Journal of Nutritional Biochemistry, 2013, 24(8): 1415-1422.
[50] Song Z Y, Ho C T, Zhang X.Gut microbiota mediate the neuroprotective effect of oolong tea polyphenols in cognitive impairment induced by circadian rhythm disorder[J]. Journal of Agricultural and Food Chemistry, 2024, 72(21): 12184-12197.
[51] Wen J J, Li M Z, Chen C H, et al.Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota[J]. Food Chemistry, 2023, 404: 134591. doi: 10.1016/j.foodchem.2022.134591.
[52] Yan R N, Ho C T, Zhang X.Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota[J]. Food Science and Human Wellness, 2022, 11(3): 494-501.
[53] Yan R N, Ho C T, Zhang X.Interaction between tea polyphenols and intestinal microbiota in host metabolic diseases from the perspective of the gut-brain axis[J]. Molecular Nutrition & Food Research, 2020, 64(14): 2000187. doi: 10.1002/mnfr.202000187.
[54] Zhang Y T, Cheng L, Liu Y N, et al.The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity[J]. Food Reviews International, 2023, 39(3): 1485-1498.
[55] Sun Q Y, Cheng L, Zhang X, et al.The interaction between tea polyphenols and host intestinal microorganisms: an effective way to prevent psychiatric disorders[J]. Food & Function, 2021, 12(3): 952-962.
[56] Selma M V, Espin J C, Tomas-Barberan F A. Interaction between phenolics and gut microbiota: role in human health[J]. Journal of Agricultural and Food Chemistry, 2009, 57(15): 6485-6501.
[57] Kawabata K, Yoshioka Y, Terao J.Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols[J]. Molecules, 2019, 24(2): 370. doi: 10.3390/molecules24020370.
[58] Rowland I, Gibson G, Heinken A, et al.Gut microbiota functions: metabolism of nutrients and other food components[J]. European Journal of Nutrition, 2018, 57: 1-24.
[59] Chen H D, Sang S M.Biotransformation of tea polyphenols by gut microbiota[J]. Journal of Functional Foods, 2014, 7: 26-42.
[60] Guo J, Li K, Lin Y J, et al.Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases[J]. Frontiers in Nutrition, 2023, 10: 1202378. doi: 10.3389/fnut.2023.1202378.
[61] Shaukat H, Ali A, Zhang Y, et al.Tea polyphenols: extraction techniques and its potency as a nutraceutical[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1175893. doi: 10.3389/fsufs.2023.1175893.
[62] Yee Y K, Koo M W L. Anti-helicobacter pylori activity of Chinese tea: in vitro study[J]. Alimentary Pharmacology & Therapeutics, 2000, 14(5): 635-638.
[63] Mhatre S, Srivastava T, Naik S, et al.Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review[J]. Phytomedicine, 2021, 85: 153286. doi: 10.1016/j.phymed.2020.153286.
[64] Yang C S, Lambert J D, Sang S.Antioxidative and anti-carcinogenic activities of tea polyphenols[J]. Archives of Toxicology, 2009, 83: 11-21.
[65] Grzesik M, Naparło K, Bartosz G, et al.Antioxidant properties of catechins: comparison with other antioxidants[J]. Food Chemistry, 2018, 241: 480-492.
[66] Rice-evans C A, Miller N J, Bolwell P G, et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids[J]. Free Radical Research, 1995, 22(4): 375-383.
[67] Benzie I F F, Szeto Y T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay[J]. Journal of Agricultural and Food Chemistry, 1999, 47(2): 633-636.
[68] Ouyang J, Zhu K, Liu Z H, et al.Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020(1): 9723686. doi: 10.1155/2020/9723686.
[69] Forester S C, Lambert J D.The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention[J]. Molecular Nutrition & Food Research, 2011, 55(6): 844-854.
[70] 俞蓉欣, 郑芹芹, 陈红平, 等. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4) : 447-462.
Yu R X, Zheng Q Q, Chen H P, et al.Recent advances in catechin biomedical nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462.
[71] Peng H B, Yao F B, Zhao J X, et al.Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials[J]//Exploration. 2023, 3(2): 20220115. doi: 10.1002/EXP.20220115.
[72] Cao Z Y, Liu J, Yang X Z.Deformable nanocarriers for enhanced drug delivery and cancer therapy[J]//Exploration. 2024, 4(5): 20230037. doi: 10.1002/EXP.20230037.
[73] 徐伟, 俞蓉欣, 张相春, 等. 多酚自组装抗菌生物材料的构建及其应用进展[J]. 茶叶科学, 2024, 44(1): 1-15.
Xu W, Yu R X, Zhang X C, et al.Construction of polyphenol self-assembly antibacterial biomaterials and progress in their applications[J]. Journal of Tea Science, 2024, 44(1): 1-15.
[74] Lin X R, Chen Z Z, Zhang Y Y, et al.Comparative characterisation of green tea and black tea cream: physicochemical and phytochemical nature[J]. Food Chemistry, 2015, 173: 432-440.
[75] Zhu R Y, Chen Z, Lü H L, et al.Another thread to uncover the aging mystery of white tea: focusing on the natural nanoparticles in tea infusion[J]. Food Chemistry, 2023, 429: 136838. doi: 10.1016/j.foodchem.2023.136838.
[76] Han H, Ke L J, Xu W, et al.Incidental nanoparticles in black tea alleviate DSS-induced ulcerative colitis in BALB/c mice[J]. Food & Function, 2023, 14(18): 8420-8430.
[77] Chen G C, Yi Z, Chen X Y, et al.Polyphenol nanoparticles from commonly consumed tea for scavenging free radicals, stabilizing pickering emulsions, and inhibiting cancer cells[J]. ACS Applied Nano Materials, 2020, 4(1): 652-665.
[78] Wu X M, Wang Y J, Wang D X, et al.Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo[J]. Food & Function, 2024, 15(4): 2181-2196.
[79] Hammad A M, Alzaghari L F, Alfaraj M, et al.Green tea polyphenol nanoparticles reduce anxiety caused by tobacco smoking withdrawal in rats by suppressing neuroinflammation[J]. Toxics, 2024, 12(8): 598. doi: 10.3390/toxics12080598.
[80] Ejima H, Richardson J J, Liang K, et al.One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157.
[81] Yu R X, Chen H P, He J, et al.Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing[J]. Advanced Materials, 2024, 36(6): 2307680. doi: 10.1002/adma.202307680.
[82] Wang H, Tang C, Xiang Y X, et al.Tea polyphenol-derived nanomedicine for targeted photothermal thrombolysis and inflammation suppression[J]. Journal of Nanobiotechnology, 2024, 22(1): 146. doi: 10.1186/s12951-024-02446-z.
[83] Wu Z, Zhang P, Yue J, et al.Tea polyphenol nanoparticles enable targeted siRNA delivery and multi-bioactive therapy for abdominal aortic aneurysms[J]. Journal of Nanobiotechnology, 2024, 22(1): 471. doi: 10.1186/s12951-024-02756-2.
[84] Guo X, Liu H Y, Hou RY, et al.Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis[J]. International Journal of Biological Macromolecules, 2024: 137463. doi: 10.1016/j.ijbiomac.2024.137463.