Welcome to Journal of Tea Science,Today is
Research Paper

The Effect of Operational Parameters of Plant Protection Unmanned Aerial Vehicle on the Droplet Deposition Distribution in Tea Canopy

  • WU Mengtao ,
  • LI Zhaoqun ,
  • YANG Yuzhou ,
  • MENG Xiangfei ,
  • LUO Zongxiu ,
  • BIAN Lei ,
  • XIU Chunli ,
  • FU Nanxia ,
  • CHEN Zongmao ,
  • WANG Guochang ,
  • CAI Xiaoming
Expand
  • 1. School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China;
    2. Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    3. Hangzhou Xihu District Agricultural Technology Extension Service Center, Hangzhou 310007, China

Received date: 2024-11-12

  Revised date: 2024-12-06

  Online published: 2025-06-18

Abstract

In order to improve the droplet deposition distribution and enhance the control effect, the operational parameters (spray droplet size, flight height, flight speed and spray volume) of a four-multirotor plant protection unmanned aerial vehicle (EA-30X) were optimized in tea gardens. The results show that the spray droplet size, flight height, flight speed and spray volume could significantly affect the droplet deposition distribution in the tea canopy. With the increase of spray droplet size, the droplet coverage and volume median diameter in the surface and inner layers of the tea canopy could be significantly increased. When the spray droplet size was 100 µm, the droplet coverage in the surface and inner layers of the tea canopy was 2.58 and 3.49 times higher than that of 20 µm, respectively. Similarly, the spray volume also significantly increased the droplet coverage and droplet size in the surface and inner layers of the tea canopy. When the spray volume increased from 30 L·hm-2 to 90 L·hm-2, the droplet coverage in the surface and inner layers of the tea canopy were maximally increased by 151% and 141%, respectively. Moreover, the coverage of the surface and inner layers of the canopy could be significantly decreased with the increase of flight height and flight speed. When the flight height reduced from 5 m to 2 m, the maximum increase of the coverage of the surface and inner layers were 45% and 173%, respectively. When the flight speed decreased from 5 m·s-1 to 2 m·s-1, the maximum increase of the coverage of the surface and inner layers were 84% and 252%, respectively. Overall, under the premise of ensuring operational safety and efficiency, reducing the flight height and flight speed and increasing the spray volume can significantly improve the coverage of droplets in the surface layer of the tea canopy. The operational parameters of EA-30X in tea gardens were proposed as the spray droplet size of 100 µm, flight height of 2 m, flight speed of 2 m·s-1, spray volume of 90 L·hm-2.

Cite this article

WU Mengtao , LI Zhaoqun , YANG Yuzhou , MENG Xiangfei , LUO Zongxiu , BIAN Lei , XIU Chunli , FU Nanxia , CHEN Zongmao , WANG Guochang , CAI Xiaoming . The Effect of Operational Parameters of Plant Protection Unmanned Aerial Vehicle on the Droplet Deposition Distribution in Tea Canopy[J]. Journal of Tea Science, 2025 , 45(3) : 535 -544 . DOI: 10.13305/j.cnki.jts.20250520.001

References

[1] 赵永田, 马悦, Sheth Sujitraj, 等. 我国茶树叶部主要真菌病害绿色防控现状与展望[J]. 植物保护, 2023, 49(5): 133-144, 166.
Zhao Y T, Ma Y, Sheth S, et al.Current status and prospects for green prevention and control of major fungal diseases of tea leaves in China[J]. Plant Protection, 2023, 49(5): 133-144, 166.
[2] 邹佳婷, 郭宇航, 边磊, 等. 化学农药对茶小绿叶蝉成虫的防效及其原因探究[J]. 茶叶科学, 2023, 43(4): 544-552.
Zou J T, Guo Y H, Bian L, et al.Study on the control effect of chemical pesticides on theEmpoasca onukiiadults[J]. Journal of Tea Science, 2023, 43(4): 544-552.
[3] 郭永旺, 袁会珠, 何雄奎, 等. 我国农业航空植保发展概况与前景分析[J]. 中国植保导刊, 2014, 34(10): 78-82.
Guo Y W, Yuan H Z, He X K, et al.Overview and prospect analysis of agricultural aviation plant protection development in China[J]. China Plant Protection, 2014, 34(10): 78-82.
[4] 袁会珠, 薛新宇, 闫晓静, 等. 植保无人飞机低空低容量喷雾技术应用与展望[J]. 植物保护, 2018, 44(5): 157-163, 185.
Yuan H Z, Xue X Y, Yan X J, et al.Applications and prospects in the unmanned aerial system for low-altitude and low-volume spray in crop protection[J]. Plant Protection, 2018, 44(5): 157-163, 185.
[5] 金书秦, 张斌. 无人机喷防的优势、问题和推广建议[J]. 农药科学与管理, 2019, 40(10): 15-20.
Jin S Q, Zhang B.Investigation on unmanned aerial vehicle in plant protection: advantages, problems and suggestions[J]. Pesticide Science and Administration, 2019, 40(10): 15-20.
[6] Lan Y, Chen S D.Current status and trends of plant protection UAV and its spraying technology in China[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 1-9.
[7] Zhang R, Hewitt A J, Chen L, et al.Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control[J]. Pest Management Science, 2023, 79(11): 4123-4131.
[8] 王腾飞, 陈楠. 全国植保无人飞机保有量突破25万架—航空植保为农业插上科技“羽翼”[N/OL]. 农民日报, 2024-11-26[2024-12-06]. https://news.cau.edu.cn/mtndnew/d26d46e9fcf946ad9174171b9bad178a.htm.
Wang T F, Chen N. China’s agricultural drone fleet surpasses 250000 units: aerial plant protection gives wings to modern agriculture [N/OL]. Farmers’ Daily, 2024-11-26[2024-12-06]. https://news.cau.edu.cn/mtndnew/d26d46e9fcf946ad9174171b9bad178a.htm.
[9] 陈盛德, 兰玉彬, 周志艳, 等. 小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响[J]. 华南农业大学学报, 2017, 38(5): 97-102.
Chen S D, Lan Y B, Zhou Z Y, et al.Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102.
[10] Sun T, Zhang S C, Xue X Y, et al.Comparison of droplet distribution and control effect of wheat aphids under different operation parameters of the crop protection UAV in the wheat flowering stage[J]. Agronomy, 2022, 12(12): 3175. doi: 10.3390/agronomy12123175.
[11] 兰玉彬, 王国宾. 中国植保无人机的行业发展概况和发展前景[J]. 农业工程技术, 2018, 38(9): 17-27.
Lan Y B, Wang G B.Industry overview and development prospects of plant protection drones in China[J]. Agricultural Engineering Technology, 2018, 38(9): 17-27.
[12] 王明, 王希, 何玲, 等. 植保无人机低空低容量喷雾在茶园的雾滴沉积分布及对茶小绿叶蝉的防治效果[J]. 植物保护, 2019, 45(1): 62-68.
Wang M, Wang X, He L, et al.Deposition distribution of pesticide droplets over the tea canopy and control efficiency againstEmpoasca flavescenssprayed by unmanned aerial vehicle (UAV)[J]. Plant Protection, 2019, 45(1): 62-68.
[13] 郭华伟, 姚惠明, 唐美君, 等. 植保无人机喷施虫螨腈防治茶小绿叶蝉效果评价[J]. 中国茶叶, 2021, 43(4): 41-49.
Guo H W, Yao H M, Tang M J, et al.Evaluation of the effect of chlorfenapyr sprayed by plant protection UAV onEmpoasca onukiiMatsuda[J]. China Tea, 2021, 43(4): 41-49.
[14] 楚博, 罗逢健, 罗宗秀, 等. 茶园应用植保无人飞机的可行性评价[J]. 茶叶科学, 2021, 41(2): 203-212.
Chu B, Luo F J, Luo Z X, et al.Feasibility evaluation of the appilcation of unmanned aerial vehicle for tea plant protection[J]. Journal of Tea Science, 2021, 41(2): 203-212.
[15] Guo S, Chen C L, Du G D, et al.Evaluating the use of unmanned aerial vehicles for spray applications in mountain Nanguo pear orchards[J]. Pest Management Science, 2024, 80(7): 3590-3602.
[16] Meng Y H, Ma Y, Wang Z G, et al.Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles[J]. PeerJ, 2022, 10: e13572. doi: 10.7717/peerj.13572.
[17] Qi P, Zhang L T, Wang Z C, et al.Effect of operational parameters of unmanned aerial vehicle (UAV) on droplet deposition in trellised pear orchard[J]. Drones, 2023, 7(1): 57. doi: 10.3390/drones7010057.
[18] 王国宾, 王十周, 陈鹏超, 等. 植保无人机喷施不同雾滴粒径药剂对其在棉花冠层沉积、穿透及脱叶催熟效果的影响[J]. 植物保护学报, 2021, 48(3): 493-500.
Wang G B, Wang S Z, Chen P C, et al.Effect of spraying droplet size with drones on deposition, penetration, and cotton harvest-aid efficacy[J]. Journal of Plant Protection, 2021, 48(3): 493-500.
[19] Zhu H, Salyani M, Fox R D.A portable scanning system for evaluation of spray deposit distribution[J]. Computers and Electronics in Agriculture, 2011, 76(1): 38-43.
[20] Chen P C, Ouyang F, Wang G B, et al.Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters[J]. Industrial Crops and Products, 2021, 163: 113324. doi: 10.1016/j.indcrop.2021.113324.
[21] Chen S D, Lan Y B, Zhou Z Y, et al.Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV[J]. Agronomy, 2020, 10(2): 195. doi: 10.3390/agronomy10020195.
[22] Hu H M, Kaizu Y, Huang J J, et al.Research on methods decreasing pesticide waste based on plant protection unmanned aerial vehicles: a review[J]. Frontiers in Plant Science, 2022, 13: 811256. doi: 10.3389/fpls.2022.811256.
[23] 袁会珠, 齐淑华, 杨代斌. 药液在作物叶片的流失点和最大稳定持留量研究[J]. 农药学学报, 2000(4): 66-71.
Yuan H Z, Qi S H, Yang D B.Study on the point of run-off and the maximum retention of spray liquid on crop leaves[J]. Chinese Journal of Pesticide Science, 2000(4): 66-71.
[24] 潘波, 王冰洁, 姜蕾, 等. 两种植保无人机对火龙果冠层的作业参数优化[J]. 植物保护学报, 2021, 48(3): 528-536.
Pan B, Wang B J, Jiang L, et al.Optimization of the operational parameters of two types of plant protection unmanned aerial vehicles (UAVs) application to the pitaya canopy[J]. Journal of Plant Protection, 2021, 48(3): 528-536.
[25] 张海艳, 兰玉彬, 文晟, 等. 植保无人机水稻田间农药喷施的作业效果[J]. 华南农业大学学报, 2019, 40(1): 116-124.
Zhang H Y, Lan Y B, Wen S, et al.Operational effects of unmanned helicopters for pesticide spraying in rice field[J]. Journal of South China Agricultural University, 2019, 40(1): 116-124.
[26] Bueno M R, da Cunha J P A R, de Santana D G. Assessment of spray drift from pesticide applications in soybean crops[J]. Biosystems Engineering, 2017, 154: 35-45.
[27] 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109.
Chen S D, Lan Y B, Li J Y, et al.Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109.
[28] Huang Z, Wang C L, Wongsuk S, et al.Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper[J]. Pest Management Science, 2023, 79(11): 4664-4678.
[29] Wang G B, Lan Y B, Qi H X, et al.Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat[J]. Pest Management Science, 2019, 75(6): 1546-1555.
[30] 兰波, 杨迎青, 陈建, 等. 无人飞机低容量喷雾中影响药剂对水稻纹枯病和二化螟防治效果的因素分析[J]. 农药学学报, 2020, 22(3): 543-549.
Lan B, Yang Y Q, Chen J, et al.Analysis of factors affecting control effects of pesticide applications against rice sheath blight andChilo suppressalisin low-volume spray by unmanned aerial vehicle[J]. Chinese Journal of Pesticide Science, 2020, 22(3): 543-549.
[31] 孙涛, 张宋超, 薛新宇, 等. 小麦不同生育期单旋翼植保无人机施药作业参数优化[J]. 植物保护学报, 2021, 48(3): 501-509.
Sun T, Zhang S C, Xue X Y, et al.Optimization of operation parameters for single-rotor plant protection unmanned aerial vehicle (UAV) at different growth stages of wheat[J]. Journal of Plant Protection, 2021, 48(3): 501-509.
[32] Shan C F, Wang G B, Wang H H, et al.Assessing the efficiency of UAV for pesticide application in disease management of peanut crop[J]. Pest Management Science, 2024, 80(12): 4505-4515.
[33] Wongsuk S, Qi P, Wang C L, et al.Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity[J]. Pest Management Science, 2024, 80(4): 2072-2084.
Outlines

/