[1] Li Y Y, Liu M X, Zhou H W, et al.Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for control of Eotetranychus kankitus (Acari: Tetranychidae)[J]. Journal of Economic Entomology, 2017, 110(3): 903-914. [2] 王晓庆, 冉烈, 彭萍, 等. 茶树新害螨——柑橘始叶螨研究[J]. 西南农业学报, 2014, 27(6): 2423-2427. Wang X Q, Ran L, Peng P, et al.Study on novel tea plant pest mite, Eotetranychus kankitus (Ehara)[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2423-2427. [3] 胡翔, 陈世春, 李品武, 等. 茶园中柑橘始叶螨及其天敌的发生特点[J]. 中国农学通报, 2018, 34(13): 155-158. Hu X, Chen S C, Li P W, et al.Eotetranychus kankitus (Acari: Tetranychidae) and its natural enemies: the occurrence characteristics in tea plantation[J]. Chinese Agricultural Science Bulletin, 2018, 34(13): 155-158. [4] 孟泽洪, 李帅, 王晓庆, 等. 柑橘始叶螨在贵州茶园的发生为害初报[J]. 贵茶, 2023(1): 32-36. Meng Z H, Li S, Wang X Q, et al. Identification of Eotetranychus kankitus Ehara, 1955 and preliminary report on their occurrence and damage in tea garden of Guizhou[J]. Journal of Guizhou Tea, 2023(1): 32-36. [5] 王迎春, 李兰英, 尧渝, 等. 四川雅安茶园主要害螨发生动态[J]. 中国植保导刊, 2023, 43(4): 35-39, 43. Wang Y C, Li L Y, Yao Y, et al.Investigation on dynamics of main mite pests in tea gardens of Ya'an, Sichuan Province[J]. China Plant Protection, 2023, 43(4): 35-39, 43. [6] 陈世春, 江宏燕, 王晓庆. 5种药剂对茶园柑橘始叶螨的田间防治效果[J]. 茶叶学报, 2023, 64(2): 60-64. Chen S C, Jiang H Y, Wang X Q.Efficacies of five pesticides on controlling Eotetranychus kankitus Ehara at tea plantation[J]. Acta Tea Sinica, 2023, 64(2): 60-64. [7] 李迎洁, 王梓英, 张国豪, 等. 温度对柑橘始叶螨实验种群生长发育繁殖的影响[J]. 生态学报, 2014, 34(4): 862-868. Li Y J, Wang Z Y, Zhang G H, et al.Effects of different temperatures on the growth and development of Eotetranychus kankitus (Ehara)[J]. Acta Ecologica Sinica, 2014, 34(4): 862-868. [8] Gissi C, Iannelli F, Pesole G.Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species[J]. Heredity, 2008, 101(4): 301-320. [9] Simon C, Buckley T R, Frati F, et al.Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annual Review of Ecology Evolution and Systematics, 2006, 37: 545-579. [10] 陈世春, 江宏燕, 廖姝然, 等. 基于COI基因解析我国茶网蝽种群遗传多样性和遗传结构[J]. 茶叶科学, 2023, 43(6): 795-805. Chen S C, Jiang H Y, Liao S R, et al.Analysis of genetic diversity and genetic structure in geographic populations of Stephanitis chinensis from China based on mitochondrial DNA COI sequence[J]. Journal of Tea Science, 2023, 43(6): 795-805. [11] 林兴雨, 宋南. Atteva charopis的比较线粒体基因组研究及系统发育分析[J]. 生物技术通报, 2023, 39(12): 300-310. Lin X Y, Song N.Comparative mitochondrial genome and phylogenetic analysis of Atteva charopis Turner, 1903[J]. Biotechnology Bulletin, 2023, 39(12): 300-310. [12] 江宏燕, 陈世春, 廖姝然, 等. 曙厉蝽和益蝽线粒体基因组全序列特征及系统发育分析[J]. 生物技术通报, 2025, 41(1): 312-323. Jiang H Y, Chen S C, Liao S R, et al.The complete sequences and phylogenetic analysis of mitochondrial genomes in Eocanthecona concinna and Picromerus lewisi[J]. Biotechnology Bulletin, 2025, 41(1): 312-323. [13] 张丹丽, 陈小艳, 袁娟娟, 等. 两种榈蝽的线粒体全基因组测序及榈蝽科系统发育地位分析[J]. 昆虫学报, 2024, 67(10): 1416-1427. Zhang D L, Chen X Y, Yuan J J, et al.Sequencing of the complete mitochondrial genomes of two palm bugs and analysis of the phylogenetic position of Thaumastocoridae (Hemiptera: Heteroptera)[J]. Acta Entomologica Sinica, 2024, 67(10): 1416-1427. [14] 朱登辉, 程欢, 卢丰, 等. 硬皮肿腿蜂属线粒体基因组特征及系统发育位置研究[J]. 昆虫学报, 2025, 68(2): 231-242. Zhu D H, Cheng H, Lu F, et al.Mitochondrial genome characteristics and phylogenetic position of the genus Sclerodermus (Hymenoptera: Bethylidae)[J]. Acta Entomologica Sinica, 2025, 68(2): 231-242. [15] Wei D D, Shao R, Yuan M L, et al.The multipartite mitochondrial genome of Liposcelis bostrychophila: insights into the evolution of mitochondrial genomes in bilateral animals[J]. PLoS One, 2012, 7(3): e33973. doi: 10.1371/journal.pone.0033973. [16] Chen S C, Wei D D, Shao R, et al.The complete mitochondrial genome of the booklouse, Liposcelis decolor: insights into gene arrangement and genome organization within the genus Liposcelis[J]. PLoS One, 2014, 9(3): e91902. doi: 10.1371/journal.pone.0091902. [17] Chen S C, Wei D D, Shao R, et al.Evolution of multipartite mitochondrial genomes in the booklice of the genus Liposcelis (Psocoptera)[J]. BMC Genomics, 2014, 15(1): 861. doi: 10.1186/1471-2164-15-861. [18] Dickey A M, Kumar V, Morgan J K, et al.A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication[J]. BMC Genomics, 2015, 16(1): 439. doi: 10.1186/s12864-015-1672-4. [19] Mu Y L, Zhang C H, Zhang Y J, et al.Characterizing the complete mitochondrial genome of Arma custos and Picromerus lewisi (Hemiptera: Pentatomidae: Asopinae) and conducting phylogenetic analysis[J]. Journal of Insect Science, 2022, 22(1): 10. doi: 10.1093/jisesa/ieab105. [20] Van Leeuwen T, Vanholme B, Van Pottelberge S, et al.Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action[J]. PNAS, 2008, 105(16): 5980-5985. [21] Razuvaeva A V, Ulyanova E G, Skolotneva E S, et al.Species identification of spider mites (Tetranychidae: Tetranychinae): a review of methods[J]. Vavilovskii Zhurnal Genet Selektsii, 2023, 27(3): 240-249. [22] Yuan M L, Wei D D, Wang B J, et al.The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs[J]. BMC Genomics, 2010, 11(1): 597. doi: 10.1186/1471-2164-11-597. [23] 陈大嵩, 戴建青. 山楂叶螨线粒体基因组的特征与系统发育与分析[J]. 环境昆虫学报, 2018, 40(5): 1087-1096. Chen D S, Dai J Q.Characterization and phylogenetic analysis of the mitochondrial genome of hawthorn spider mite[J]. Journal of Environmental Entomology, 2018, 40(5): 1087-1096. [24] Tian W J, Yi T C, Jin D C, et al.Complete mitochondrial genome of Stigmaeopsis miscanthi (Acari: Tetranychidae)[J]. Mitochondrial DNA B Resources, 2022, 7(5): 836-837. [25] Chen D S, Jin P Y, Hong X Y.The complete mitochondrial genome of Tetranychus truncatus Ehara (Acari: Tetranychidae)[J]. Mitochondrial DNA Part A, 2016, 27(2): 1480-1481. [26] Chen D S, Jin P Y, Zhang K J, et al.The complete mitochondrial genomes of six species of Tetranychus provide insights into the phylogeny and evolution of spider mites[J]. PLoS One, 2014, 9(10): e110625. doi: 10.1371/journal.pone.0110625. [27] Sun J T, Lin J H, Zhang Q, et al.The mitochondrial genome of the red tomato spider mite, Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae) and its implications for phylogenetic analysis[J]. Systematic and Applied Acarology, 2019, 24(9): 1724-1735. [28] Li J, Guo J J, Jin D C.Ontogenetic development and redescription of Eotetranychus kankitus (Acariformes: Tetranychidae)[J]. Zootaxa, 2018, 4540(1): 132-157. [29] Bernt M, Donath A, Juhling F, et al.MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319. [30] Laslett D, Canback B.ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences[J]. Bioinformatics, 2008, 24(2): 172-175. [31] Kumar S, Stecher G, Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [32] Xia X.DAMBE7: new and improved tools for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2018, 35(6): 1550-1552. [33] Grant J R, Enns E, Marinier E, et al.Proksee: in-depth characterization and visualization of bacterial genomes[J]. Nucleic Acids Research, 2023, 51(W1): W484-W492. [34] Xue X F, Deng W, Qu S X, et al.The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost?[J]. BMC Genomics, 2018, 19(1): 466. doi: 10.1186/s12864-018-4868-6. [35] Zhang D, Gao F L, Jakovlic I, et al.PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 2020, 20(1): 348-355. [36] Xiang C Y, Gao F, Jakovlić I, et al.Using PhyloSuite for molecular phylogeny and tree-based analyses[J]. Imeta, 2023, 2(1): e87. doi: 10.1002/imt2.87. [37] Katoh K, Misawa K, Kuma K, et al.MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-3066. [38] Katoh K, Standley D M.MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. [39] Ranwez V, Douzery E J P, Cambon C, et al. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons[J]. Molecular Biology and Evolution, 2018, 35(10): 2582-2584. [40] Ranwez V, Harispe S, Delsuc F, et al.MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons[J]. PLoS One, 2011, 6(9): e22594. doi: 10.1371/journal.pone.0022594. [41] Castresana J.Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J]. Molecular Biology and Evolution, 2000, 17(4): 540-552. [42] Talavera G, Castresana J.Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J]. Systematic Biology, 2007, 56(4): 564-577. [43] Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6): 587-589. [44] Nguyen L T, Schmidt H A, Von Haeseler A, et al.IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. [45] Minh B Q, Schmidt H A, Chernomor O, et al.IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution, 2020, 37(5): 1530-1534. [46] Hoang D T, Chernomor O, Von Haeseler A, et al.UFBoot2: improving the ultrafast bootstrap approximation[J]. Molecular Biology and Evolution, 2018, 35(2): 518-522. [47] Ronquist F, Teslenko M, Van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539-542. [48] Huelsenbeck J P, Ronquist F, Nielsen R, et al.Bayesian inference of phylogeny and its impact on evolutionary biology[J]. Science, 2001, 294(5550): 2310-2314. [49] Letunic I, Bork P.Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research, 2021, 49(W1): W293-W296. [50] 任爱, 赵凯, 刘军侠, 等. 昆虫不同寄主种群遗传分化及其生理适应机制研究进展[J]. 河北林果研究, 2013, 28(3): 254-258. Ren A, Zhao K, Liu J X, et al.Research advance on genetic diversity and host population differentiation of insects[J]. Hebei Journal of Forestry and Orchard Research, 2013, 28(3): 254-258. [51] Kanmiya K, Ueda S, Kasai A, et al.Proposal of new specific status for tea-infesting populations of the nominal citrus spiny whitefly Aleurocanthus spiniferus(Homoptera: Aleyrodidae)[J]. Zootaxa, 2011(2797): 25-44. doi: 10.11646/zootaxa.2797.1.3. [52] Chen Z M, Luo Z X.Management of insect pests on tea plantations: safety, sustainability, and efficiency[J]. Annual Review of Entomology, 2025, 70(1): 359-377. [53] Chen Z T, Mu L X, Wang J R, et al.Complete mitochondrial genome of the citrus spiny whitefly Aleurocanthus spiniferus (Quaintance) (Hemiptera: Aleyrodidae): implications for the phylogeny of whiteflies[J]. PLoS One, 2016, 11(8): e0161385. doi: 10.1371/journal.pone.0161385. [54] Chen S C, Wang X Q, Li P W, et al.The complete mitochondrial genome of Aleurocanthus camelliae: insights into gene arrangement and genome organization within the family Aleyrodidae[J]. International Journal of Molecular Sciences, 2016, 17(11): 1843. doi: 10.3390/ijms17111843. [55] 马琳, 王道通, 任麒麟, 等. 草地贪夜蛾寄主型分化及其形成机制研究进展[J]. 应用昆虫学报, 2023, 60(4): 1027-1038. Ma L, Wang D T, Ren Q L, et al.Advances in research on host strain formation, and differentiation, in the fall armyworm, Spodoptera frugiperda (Smith)[J]. Chinese Journal of Applied Entomology, 2023, 60(4): 1027-1038. [56] Satar S, Kersting U, Yokomi R.Presence of two host races of Aphis gossypii Glover (Hemiptera: Aphididae) collected in Turkey[J]. Annals of Applied Biology, 2013, 162(1): 41-49. [57] Niu R C, Gao X K, Luo J Y, et al.Mitochondrial genome of Aphis gossypii Glover cucumber biotype (Hemiptera: Aphididae)[J]. Mitochondrial DNA Part B, 2021, 6(3): 922-924. [58] Khalaf L, Timm A, Chuang W P, et al.Modeling Aceria tosichella biotype distribution over geographic space and time[J]. PLoS One, 2020, 15(5): e0233507. doi: 10.1371/journal.pone.0233507. |