[1] 阮建云. 中国茶树栽培40年[J]. 中国茶叶, 2019, 41(7): 1-7. Ruan J Y.Forty years of tea cultivation in China[J]. China Tea, 2019, 41(7): 1-7. [2] 陈根生, 尹军峰, 袁海波, 等. 往复切割式机采鲜叶品质特点及其名优绿茶适制品类[J]. 中国茶叶, 2018, 40(7): 1-5. Chen G S, Yin J F, Yuan H B, et al.Quality characteristics of fresh tea leaves harvested by reciprocating cutter and suitable types for famous green tea[J]. China Tea, 2018, 40(7): 1-5. [3] 郭雅玲, 赖凌凌, 刘亚峰, 等. 乌龙茶机采及其分选技术研究进展[J]. 中国农机化学报, 2016, 37(1): 262-267. Guo Y L, Lai L L, Liu Y F, et al.Research advances on technologies of mechanical-plucking Oolong tea and screening[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(1): 262-267. [4] 汤一平, 韩旺明, 胡安国, 等. 基于机器视觉的乘用式智能采茶机设计与试验[J]. 农业机械学报, 2016, 47(7): 15-20. Tang Y P, Han W M, Hu A G, et al.Design and experiment of intelligentized yea-plucking machine for human riding based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 15-20. [5] Weng X X, Tan D P, Wang G, et al.CFD simulation and optimization of the leaf collecting mechanism for the riding-type tea plucking machine[J]. Agriculture, 2023, 13(5): 946. doi: 10.3390/agriculture13050946. [6] 李林山. 茶叶采摘技术及采茶机械研究进展[J]. 南方农机, 2024, 55(13): 61-64. Li L S.Research progress on tea picking technology and machinery[J]. Southern Agricultural Machinery, 2024, 55(13): 61-64. [7] 罗泽涌, 陈建, 方晶晶, 等. 我国丘陵山区茶园种植机械化现状与发展研究[J]. 农机化研究, 2020, 42(2): 1-7. Luo Z Y, Chen J, Fang J J, et al.Current situation and development suggestions of tea garden planting mechanization in hilly and mountainous areas[J]. Journal of Agricultural Mechanization Research, 2020, 42(2): 1-7. [8] 黄藩, 王云, 熊元元, 等. 我国茶叶机械化采摘技术研究现状与发展趋势[J]. 江苏农业科学, 2019, 47(12): 48-51. Huang F, Wang Y, Xiong Y Y, et al.Research status and development trends of mechanized tea picking technology in China[J]. Jiangsu Agricultural Sciences, 2019, 47(12): 48-51. [9] 吴焕焕, 任志红, 肖文敏, 等. 山东茶区不同茶树品种的机采适宜性评价[J]. 中国农学通报, 2025, 41(1): 76-81. Wu H H, Ren Z H, Xiao W M, et al.Evaluation on mechanized-picking suitability of different tea cultivars in Shandong province[J]. Chinese Agricultural Science Bulletin, 2025, 41(1): 76-81. [10] Yang H L, Chen L, Ma Z B, et al.Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator[J]. Computers and Electronics in Agriculture, 2021, 181: 105946. doi: 10.1016/j.compag.2020.105946. [11] Zhang L, Zou L, Wu C Y, et al.Method of famous tea sprout identification and segmentation based on improved watershed algorithm[J]. Computers and Electronics in Agriculture, 2021, 184: 106108. doi: 10.1016/j.compag.2021.106108. [12] 沈宝国, 董春旺, 蒋修定. 茶树鲜叶分选研究现状与展望[J]. 中国农机化学报, 2016, 37(8): 87-90. Shen B G, Dong C W, Jiang X D.Research status and prospects of fresh tea leaf sorting[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(8): 87-90. [13] 骆耀平, 宋婷婷, 文东华, 等. 茶树新梢节间与展叶角度生长变化及对名优茶机采的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 420-424. Luo Y P, Song T T, Wen D H, et al.Growth changes of internode length and leaf spreading angle in tea shoots and their effects on mechanical harvesting of high-quality tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 420-424. [14] 陈红旭, 唐茜, 邹瑶, 等. 四川茶区适宜机采茶树品种的筛选[J]. 中国茶叶, 2019, 41(2): 23-27, 31. Chen H X, Tang Q, Zou Y, et al.Screening of tea cultivars suitable for mechanical harvesting in Sichuan tea region[J]. China Tea, 2019, 41(2): 23-27, 31. [15] Luo Y, Yu Q Q, Xie Y H, et al.Internode length is correlated with GA3 content and is crucial to the harvesting performance of tea-picking machines[J]. Plants, 2023, 12(13): 2508. doi: 10.3390/plants12132508. [16] Wang Z H, Peng H, Yue C N, et al.Selection of core evaluation indices and construction of a comprehensive evaluation method for machine-harvested tea plant cultivars[J]. Euphytica, 2022, 218(11): 162. doi: 10.1007/s10681-022-03112-x. [17] 虞富莲. 《中国古茶树》[M]. 昆明: 云南科技出版社, 2016. Yu F L.Ancient tea trees in China [M]. Kunming: Yunnan Science and Technology Press, 2016. [18] 赖幸菲, 赖兆祥, 操君喜, 等. 英红九号茶园机械化采摘关键技术研究[J]. 广东农业科学, 2020, 47(9): 127-133. Lai X F, Lai Z X, Cao J X, et al.Study on key technologies of mechanical picking in Yinghong No. 9 tea garden[J]. Guangdong Agricultural Sciences, 2020, 47(9): 127-133. [19] 樊闯, 赵子皓, 张雪松, 等. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. Fan C, Zhao Z H, Zhang X S, et al.Prediction model of one season rice development period based on BP neural network[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. [20] 马楠, 蔡朝朝, 白涛. 基于机器学习的新疆植被覆盖变化及其影响因子之间的关系[J]. 湖北农业科学, 2024, 63(8): 216-222. Ma N, Cai C C, Bai T.The relationship between vegetation cover change and its influencing factors in Xinjiang based on machine learning[J]. Hubei Agricultural Sciences, 2024, 63(8): 216-222. [21] 唐翠翠, 黄文江, 罗菊花, 等. 基于相关向量机的冬小麦蚜虫遥感预测[J]. 农业工程学报, 2015, 31(6): 201-207. Tang C C, Huang W J, Luo J H, et al.Remote sensing prediction of winter wheat aphids based on relevance vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 201-207. [22] 鲁军景, 孙雷刚, 黄文江. 作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32. Lu J J, Sun L G, Huang W J.Advances in remote sensing monitoring and early warning of crop pests and diseases[J]. Remote Sensing Technology and Application, 2019, 34(1): 21-32. [23] 刘雪梅, 章海亮. 基于近红外光谱的不同建模方法检测土壤有机质和速效P含量的研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4): 52-56, 68. Liu X M, Zhang H L.Measurement of soil organic matter and phosphorus using different calibration methods based on near-infrared spectroscopy[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(4): 52-56, 68. [24] 陈治瑀. 基于无人机技术下农作物产量估算模型研究[J]. 农机使用与维修, 2024(7): 148-151. Chen Z Y.Research on crop yield estimation modeling based on unmanned aerial vehicle technology[J]. Agricultural Machinery Use & Maintenance, 2024(7): 148-151. [25] Chen Y T, Chen S F.Localizing plucking points of tea leaves using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 171: 105298. doi: 10.1016/j.compag.2020.105298. [26] 向芬, 刘红艳, 戴翠婷, 等. 不同修剪方式对春季茶树生长与机采效果的影响[J]. 中国茶叶, 2024, 46(12): 54-58. Xiang F, Liu H Y, Dai C T, et al.Effects of different pruning methods on tea plant growth and mechanized picking in spring[J]. China Tea, 2024, 46(12): 54-58. [27] 游小妹, 陈志辉, 钟秋生, 等. 8个适宜机采乌龙茶品种各叶位节间长与展叶角度分析[J]. 茶叶学报, 2017, 58(1): 21-25. You X M, Chen Z H, Zhong Q S, et al.Internode-distances and leaf-angles of eight oolong tea cultivars with potential for mechanical picking[J]. Acta Tea Sinica, 2017, 58(1): 21-25. [28] 邢瑶, 唐锁海, 梅菊芬, 等. 不同茶树品种机采大宗茶鲜叶比较研究[J]. 中国茶叶, 2020, 42(4): 36-39. Xing Y, Tang S H, Mei J F, et al.A comparative study of freshly harvested bulk tea leaves from different tea cultivars[J]. China Tea, 2020, 42(4): 36-39. [29] Madamombe G, Tesfamariam E, Taylor N.Yield decline in mechanically harvested clonal tea (Camellia sinensis (L.) O. Kuntze) as influenced by changes in source/sink and radiation interception dynamics in the canopy[J]. Scientia Horticulturae, 2015, 194: 286-294. doi: 10.1016/j.scienta.2015.08.009. [30] 郑旭霞, 敖存, 毛宇骁, 等. 杭州名优茶机采品种筛选初步研究[J]. 浙江农业科学, 2016, 57(5): 661-663. Zheng X X, Ao C, Mao Y X, et al.Preliminary study on screening machine-harvested cultivars for Hangzhou high-quality tea[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(5): 661-663. [31] Liu H R, Duan L X, Ma J Q, et al. CsEXL3 regulate mechanical harvest-related droopy leaves under the transcriptional activation of CsBES1.2 in tea plant [J]. Horticulture Research, 2024, 11(5): uhae074. doi: 10.1093/hr/uhae074. [32] Zhu J P, Li X M, Huang J Y, et al.Transcriptomics and plant hormone analysis reveal the mechanism of branching angle formation in tea plants (Camellia sinensis)[J]. International Journal of Molecular Sciences, 2025, 26(2): 604. doi: 10.3390/ijms26020604. [33] 冯花, 王飞权, 陈荣冰, 等. 不同来源地茶树种质资源表型性状遗传多样性分析[J]. 热带作物学报, 2021, 42(10): 2758-2768. Feng H, Wang F Q, Chen R B, et al.Genetic diversity analysis of phenotypic characters of tea germplasm resources from different origins[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2758-2768. [34] Kong W L, Kong X R, Xia Z Q, et al.Genomic analysis of 1,325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement[J]. Nature Genetics, 2025, 57: 997-1007. doi: 10.1038/s41588-025-02135-z. [35] Liu H R, Duan L X, Tang C Q, et al. A single base mutation in promoter of CsTPR enhances the negative regulation on mechanical related leaves droopiness in tea plant [J]. Horticulture Research, 2025, 12(17): uhaf098. doi: 10.1093/hr/uhaf098. [36] Xia X B, Mi X Z, Jin L, et al.CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21(1): 243. doi: 10.1186/s12870-021-03044-z. [37] Lu L, Luo W W, Zheng Y N, et al.Effect of different pruning operations on the plant growth, phytohormones and transcriptome profiles of the following spring tea shoots[J]. Beverage Plant Research, 2022, 2: 12. doi: 10.48130/BPR-2022-0012. [38] Li W, Xiang F, Su Y, et al.Gibberellin increases the bud yield and theanine accumulation in Camellia sinensis (L.) Kuntze[J]. Molecules, 2021, 26(11): 3290. doi: 10.3390/molecules26113290. [39] Chen J M, Wu S H, Mao K Q, et al.Adverse effects of shading on the tea yield and the restorative effects of exogenously applied brassinolide[J]. Industrial Crops and Products, 2023, 197: 116546. doi: 10.1016/j.indcrop.2023.116546. [40] Mao K Q, Li J L, Wu S H, et al.Melatonin treatment promotes cold adaptation and spring growth of tea plants[J]. Industrial Crops and Products, 2023, 200: 116834. doi: 10.1016/j.indcrop.2023.116834. |