欢迎访问《茶叶科学》,今天是

茶叶科学 ›› 2025, Vol. 45 ›› Issue (6): 1006-1020.

• 研究报告 • 上一篇    下一篇

茶树宜机采表型性状筛选

陈家铭1,2, 郭阳3, 辜大川1,2, 黎健龙4, 陈义勇4, 黄燕峰4, 唐劲驰4, 杨子银1,2,*   

  1. 1.中国科学院华南植物园,广东 广州 510650;
    2.中国科学院大学,北京 100049;
    3.华南农业大学电子工程学院,广东 广州 510642;
    4.广东省农业科学院茶叶研究所,广东 广州 510640
  • 收稿日期:2025-05-02 出版日期:2025-12-15 发布日期:2025-12-10
  • 通讯作者: *zyyang@scbg.ac.cn
  • 作者简介:陈家铭,男,博士研究生,主要从事农艺措施对茶树生长调控方面的研究。
  • 基金资助:
    广东省科技计划项目(2023B0202120001)、国家现代农业产业技术体系(CARS-19)、科技创新战略(农业科研主力军建设)专项-金颖之星(R2023PY-JX023)

Screening of Mechanical Harvestable Traits of Tea Cultivars

CHEN Jiaming1,2, GUO Yang3, GU Dachuan1,2, LI Jianlong4, CHEN Yiyong4, HUANG Yanfeng4, TANG Jinchi4, YANG Ziyin1,2,*   

  1. 1. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China;
    4. Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
  • Received:2025-05-02 Online:2025-12-15 Published:2025-12-10

摘要: 近年来,中国茶叶生产面临劳动力短缺问题,机械化采收技术已成为产业迫切需求。目前机采茶鲜叶破碎率高、质量低,这与茶树表型性状密切相关。以广东省适制红茶或乌龙茶为主的广泛栽培茶树品种为研究对象,采集了7个品种100个样方的表型数据,通过多种分析方法和机采质量预测模型挖掘关键性状。相关性分析发现,机采质量与叶长、叶长宽比、一芽二叶长度和一芽三叶长度呈显著正相关,与总芽密度呈显著负相关。灰色关联分析表明,机采质量与叶长宽比、叶宽、一芽一叶长度和一芽二叶长度高度关联。随机森林分析确定叶长宽比、第三节间长度和第四节间长度分别是影响机采优采率、完整率和破碎率的关键性状。进一步构建了3种核心机采质量性状(优采率、完整率和破碎率)的预测模型,通过4种表型性状集(全部性状、相关性显著、灰色关联度>0.9、随机森林分析前6)与4种机器学习算法的组合验证,发现灰色关联性状预测优采率效果最佳(R2=0.65,RMSE=0.04);随机森林性状适于预测完整率(R2=0.86,RMSE=0.02);全部性状预测破碎率精度最优(R2=0.92,RMSE=0.01)。综合建模分析确定一芽二叶长度和第三节间长度是影响红茶和乌龙茶鲜叶原料机采的关键性状,研究结果为宜机采品种选育提供理论依据与关键参数。

关键词: 茶树, 宜机采性状, 表型筛选, 机器学习

Abstract: In recent years, tea production in China has faced challenges of labor shortages, driving urgent industrial demands for mechanized harvesting technologies. The prevalent issues of high leaf fragmentation and low harvest quality in current mechanical systems are closely related to tea plant phenotypic traits. This study investigated seven widely cultivated tea cultivars mainly being suitable for black/oolong tea production in Guangdong Province. Phenotypic data from 100 quadrat sample plots of seven tea cultivars was systematically collected. Multiple analytical approaches, combined with mechanical harvesting quality predictive models, were employed to identify critical determining traits. The correlation analysis demonstrates that leaf length, leaf length-to-width ratio, length of one bud with two leaves, and length of one bud with three leaves were positively correlated with mechanical harvesting quality, whereas the total bud density showed a negative correlation. Grey relational analysis reveals significant associations between the mechanical harvesting quality and the leaf length-to-width ratio, leaf width, length of one bud with one leaf, and length of one bud with two leaves. Random forest analysis identifies the leaf length-to-width ratio, third internode length, and fourth internode length as critical traits influencing the superior harvest rate, intact rate, and fragmentation rate in mechanical harvesting, respectively. Further validation combined four phenotypic trait groups (full trait set, correlation-significant traits, grey relational>0.9, random forest top 6) with four machine learning algorithms to predict three core mechanical harvesting traits. The results demonstrate the grey relational traits achieved the optimal prediction for superior harvest rate (R2=0.65, RMSE=0.04), and random forest-selected traits were suitable for intact rate prediction (R2=0.86, RMSE=0.02), and complete trait group shows the highest fragmentation rate accuracy (R2=0.92, RMSE=0.01). Integrated modeling analysis identifies the length of one bud with two leaves and third internode length as key mechanical harvestable traits influencing black and oolong tea production. These findings established theoretical foundations and provided critical parameters for breeding tea cultivars optimized for mechanical harvesting.

Key words: tea plant, mechanical harvestable traits, phenotypic screening, machine learning

中图分类号: