[1] 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372. Zhang W J, Rong J, Wei C L, et al.Domestication origins and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. [2] 林海燕, 曾超珍, 谭斌, 等. 转录组学技术在茶树抗逆性的研究进展[J]. 分子植物育种, 2019, 17(3): 803-810. Lin H Y, Zeng C Z, Tan B, et al.Advances in transcriptomics technology for studying stress resistance in tea plants[J]. Molecular Plant Breeding, 2019, 17(3): 803-810. [3] 韦朝领, 李叶云, 江昌俊. 茶树逆境生理及其分子生物学研究进展[J]. 安徽农业大学学报, 2009, 36(3): 335-339. Wei C L, Li Y Y, Jiang C J.Advances in research on tea plant stress physiology and molecular biology[J]. Journal of Anhui Agricultural University, 2009, 36(3): 335-339. [4] Winkel S B.Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. [5] Baier M, Bittner A, Prescher A, et al.Preparing plants for improved cold tolerance by priming[J]. Plant, Cell & Environment, 2019, 42(3): 782-800. [6] Iqbal S, Akhtar J, Naz T, et al.Root morphological adjustments of crops to improve nutrient use efficiency in limited environments[J]. Communications in Soil Science and Plant Analysis, 2020, 51(19): 2452-2465. [7] Bonfante P, Anca I A.Plants, mycorrhizal fungi, and bacteria: a network of interactions[J]. Annual Review of Microbiology, 2009, 63(1): 363-383. [8] Sun T R, Cang L, Wang Q Y, et al.Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 919-925. [9] Bradu C, Kutasi K, Magureanu M, et al.Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. Journal of Physics D: Applied Physics, 2020, 53(22): 223001. doi: 10.1088/1361-6463/ ab795a. [10] Adhikari B, Adhikari M, Ghimire B, et al.Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings[J]. Scientific Reports, 2019, 9(1): 16080. doi: 10.1038/s41598-019-52646-z. [11] Nixon D J, Burgess P J, Sanga B N K, et al. A comparison of the responses of mature and young clonal tea to drought[J]. Experimental Agriculture, 2001, 37(3): 391-402. [12] Durak I, Yurtarslanl Z, Canbolat O.A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction[J]. Clinica Chimica Acta, 1993, 214(1): 103-104. [13] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. [14] Oakley B R, Kirsch D R, Morris N R.A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels[J]. Analytical Biochemistry, 1980, 105(1): 361-363. [15] Chen C, Wu Y, Li J, et al.TBtools-Ⅱ: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11): 1733-1742. [16] 满佳旭, 高梓琪, 武思敏, 等. 中小叶种茶酯型儿茶素含量测定及亚细胞定位[J]. 湖北农业科学, 2024, 63(5): 98-100. Man J X, Gao Z Q, Wu S M, et al.Determination of ester-type catechin content and subcellular localization in small-leaf tea varieties[J]. Hubei Agricultural Sciences, 2024, 63(5): 98-100. [17] Zhao J, Li P, Xia T, et al.Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model[J]. Critical Reviews in Biotechnology, 2020, 40(5): 667-688. [18] Song J S, Kim S B, Ryu S, et al.Emerging plasma technology that alleviates crop stress during the early growth stages of plants: a review[J]. Frontiers in Plant Science, 2020, 11: 988. doi: 10.3389/fpls.2020.00988. [19] Singh H, Niharika, Lamichhane P, et al.Enhancing crop health and sustainability: exploring the potential of secondary metabolites and non-thermal plasma treatment as alternatives to pesticides[J]. Plant Biotechnology Reports, 2023, 17(6): 803-820. [20] Bennett R N, Wallsgrove R M.Secondary metabolites in plant defence mechanisms[J]. New Phytologist, 1994, 127(4): 617-633. [21] Rhodes D, Verslues P E, Sharp R E.Role or amino acids in abiotic stress resistance [M]. Florida: CRC Press, 1998: 333-370. [22] Chatterjee A, Paul A, Unnati G M, et al.MAPK cascade gene family in Camellia sinensis: in-silico identification, expression profiles and regulatory network analysis[J]. BMC Genomics, 2020, 21(1): 613. doi: 10.1186/s12864- 020-07030-x. [23] Stevens C, Wilson C L, Lu J Y, et al.Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of plant fruits[J]. Crop Protection, 1996, 15(2): 129-134. [24] Perkowski M C, Warpeha K M.Phenylalanine roles in the seed-to-seedling stage: not just an amino acid[J]. Plant Science, 2019, 289: 110223. doi: 10.1016/j.plantsci. 2019.110223. [25] Mori I C, Schroeder J I.Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiology, 2004, 135(2): 702-708. [26] Yang Q, Dong B, Wang L, et al.CDPK6 phosphorylates and stabilizes MYB30 to promote hyperoside biosynthesis that prolongs the duration of full-blooming in okra[J]. Journal of Experimental Botany, 2020, 71(14): 4042-4056. [27] Zhang Q, Li Y, Cao K, et al.Transcriptome and proteome depth analysis indicate ABA, MAPK cascade and Ca2+ signaling co-regulate cold tolerance in Rhododendron chrysanthum Pall[J]. Frontiers in Plant Science, 2023, 14: 1146663. doi: 10.3389/fpls.2023.1146663 [28] Akashi K, Miyake C, Yokota A.Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger[J]. FEBS Letters, 2001, 508(3): 438-442. [29] Kusvuran S, Dasgan H Y, Abak K.Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon[J]. The Scientific World Journal, 2013, 2013(1): 253414. doi: 10.1155/2013/253414. [30] Yokota A, Kawasaki S, Iwano M, et al.Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon[J]. Annals of Botany, 2002, 89(7): 825-832. [31] Yan J, Aznar A, Chalvin C, et al.Increased drought tolerance in plants engineered for low lignin and low xylan content[J]. Biotechnology for Biofuels, 2018, 11(1): 195. doi: 10.1186/s13068-018-1196-7. [32] Tachibana K, Nakamura T.Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water[J]. Journal of Physics D: Applied Physics, 2019, 52(38): 385202. doi: 0.1088/1361-6463/ab2529. [33] 蒋景龙. 外源H2O2对低温胁迫下柑橘叶片抗寒性的影响[J]. 西北植物学报, 2016, 36(3): 499-505. Jiang J L.Effects of exogenous H2O2 on cold tolerance of citrus leaves under low-temperature stress[J]. Acta Botanica Sinica, 2016, 36(3): 499-505. [34] 张琼, 陆銮眉, 戴清霞, 等. 镉胁迫对水仙根系抗氧化系统的影响[J]. 福建农业学报, 2016, 31(6): 591-595. Zhang Q, Lu L M, Dai Q X, et al.Effects of cadmium stress on the antioxidant system of narcissus roots[J]. Journal of Fujian Agriculture, 2016, 31(6): 591-595. [35] Nakano R T, Shimasaki T.Long-term consequences of PTI activation and its manipulation by root-associated microbiota[J]. Plant and Cell Physiology, 2024, 65(5): 681-693. |