Welcome to Journal of Tea Science,Today is

Cloning and Expression Analysis of Small GTPase (CsRAC5) under Cold Stress in Tea Plant (Camellia sinensis)

  • YE Xiaoli ,
  • PAN Junting ,
  • ZHU Jiaojiao ,
  • SHU Zaifa ,
  • CUI Chuanlei ,
  • XING Anqi ,
  • NONG Shouhua ,
  • ZHU Xujun ,
  • FANG Wanping ,
  • WANG Yuhua
Expand
  • College of Horticulture, Nangjing Agricultural University, Nanjing 210095, China

Received date: 2017-10-09

  Revised date: 2017-11-25

  Online published: 2019-08-28

Abstract

Small GTPase binding proteins are a kind of important signal transduction proteins, which are involved in various life activities of plants. However, few relative studies were reported in tea plants (Camellia sinensis). Here, a small GTPase binding protein named CsRAC5 was cloned by using a cDNA template from tea cultivar ‘Longjingchangye’. The results showed that the length of its open reading frame (ORF) is 597βbp, encoding 198 amino acids. It has a conserved Rho domain which belongs to ROP family. Multiple alignment of CsRAC5 with homologue genes in other plant species showed that their identity could reach 95.96%. CsRAC5 is a hydrophilic protein with the theoretical relative weight of 21.79βkDa. The subcellular assay showed that CsRAC5 was localized in the nuclear and membrane. In addition, the results of RT-PCR analysis showed that the highest expression level of CsRAC5 was in leaves but the lowest in pollen. The expression level of CsRAC5 was decreased under cold stress.

Cite this article

YE Xiaoli , PAN Junting , ZHU Jiaojiao , SHU Zaifa , CUI Chuanlei , XING Anqi , NONG Shouhua , ZHU Xujun , FANG Wanping , WANG Yuhua . Cloning and Expression Analysis of Small GTPase (CsRAC5) under Cold Stress in Tea Plant (Camellia sinensis)[J]. Journal of Tea Science, 2018 , 38(2) : 146 -154 . DOI: 10.13305/j.cnki.jts.2018.02.005

References

[1] Bischoff F, Molendijk A, Rajendrakumar C S V, et al. GTP-binding proteins in plants[J]. Cellular and molecular life sciences: CMLS, 1999, 55(2): 233-256.
[2] Xu T, Wen M, Nagawa S, et al.Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis[J]. Cell, 2010, 143(1): 99-110.
[3] 汪云刚, 矣兵, 冉隆珣, 等. 云南茶树种质资源的抗性鉴定和评价[J]. 中国农学通报, 2011, 27(13): 86-91.
[4] 杨新国. 茶树冻害发生原因及防御补救措施[J]. 现代农业科技, 2011(21): 198-198.
[5] Ma Y, Dai X, Xu Y, et al.COLD1 Confers chilling tolerance in rice[J]. Cell, 2015, 160(6): 1209-1221.
[6] Xiong L, Ishitani M, Lee H, et al.The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression[J]. The Plant cell, 2001, 13(9): 2063-2083.
[7] Lee B H, Lee H, Xiong L, et al.A mitochondrial complex I defect impairs cold-regulated nuclear gene expression[J]. Plant Cell, 2002, 14(6): 1235-1251.
[8] Bloch D, Lavy M, Efrat Y, et al.Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling[J]. Molecular Biology of the Cell, 2005, 16(4): 1913-1927.
[9] Lin D, Ren H, Fu Y.ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana[J]. Chinese Journal of Plant Ecology, 2015, 57(1): 31-39.
[10] Huang J B, Liu H, Chen M, et al.ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis[J]. Plant Cell, 2014, 26(9): 35013518.
[11] Xin Z, Zhao Y, Zheng ZL.Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis[J]. Plant physiology, 2005, 139(3): 1350-1365.
[12] Tao L Z, Cheung A Y, Wu H M.Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression[J]. Plant Cell, 2002, 14(11): 2745-2760.
[13] Hong D, Jeon B W, Kim S Y, et al.The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis[J]. New Phytologist, 2016, 209(2): 624-635.
[14] Baxterburrell A, Yang Z, Springer P S, et al.RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance[J]. Science, 2002, 296(5575): 2026-2028.
[15] Berken A.ROPs in the spotlight of plant signal transduction[J]. Cellular & Molecular Life Sciences Cmls, 2006, 63(21): 2446-2459.
[16] Huang S, Robinson R C, Gao L Y, et al.Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization[J]. Plant Cell, 2005, 17(2): 486-501.
[17] 陈暄, 彭英, 郝姗, 等. 茶树花粉的离体萌发研究[J]. 江苏农业科学, 2010(6): 233-235.
[18] Wang W, Sheng X, Shu Z, et al.Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth[J]. Frontiers in Plant Science, 2016, 7(342): 456. doi: 10.3389/fpls.2016.00456.
[19] Sparkes I A, Runions J, Kearns A, et al.Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 2006, 1(4): 2019-2025.
[20] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587.
[21] 史成颖, 李正国, 徐乾, 等. 茶愈伤组织实时定量PCR分析中内参基因的选取[J]. 安徽农业大学学报, 2014, 41(6): 905-910.
[22] Pfaffl M W.A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29(9): e45.
[23] Zheng Z L, Yang Z B.The Rop GTPase: an emerging signaling switch in plants[J]. Plant Molecular Biology, 2000, 44(1): 1-9.
[24] Nibau C, Wu H M, Cheung A Y.RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants[J]. Trends in Plant Science, 2006, 11(6): 309-315.
[25] Yang Z.Small GTPases: versatile signaling switches in plants[J]. The Plant cell, 2002, 14(Sl): S375-S388.
[26] Molendijk A J, Bischoff F, Rajendrakumar C S V, et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth[J]. Embo Journal, 2001, 20(11): 2779-2788. DOI: 10.1093/emboj/20.11.2779.
[27] 梁卫红, 李辉, 李佳佳, 等. 非生物胁迫和植物激素对与水稻OsRac5结合的含CC域蛋白编码基因OsMY1OsMY2表达的影响[J]. 中国生物化学与分子生物学报, 2013, 29(4): 368-376.
[28] Jin W W, Xu C J, Xian L, et al.Expression of ROP/RAC GTPase genes in postharvest loquat fruit in association with senescence and cold regulated lignifications[J]. Postharvest Biology & Technology, 2009, 54(1): 9-14.
Outlines

/