[1] 陈宗懋. 茶园病虫区系的构成和演替[J]. 中国茶叶, 1979, (1): 6-8.
[2] Chen Z M, Sun X L, Dong W X.Genetics and Chemistry of the Resistance of Tea Plant to Pests[M]//Chen liang, Zeno Apostolides, Chen zongmao. Global Tea Breeding: Achievements, Challenges and Perspectives. Hangzhou: Zhejiang university press, 2012: 343-360. DOI: 10.1007/978-3-642-31878-8_13.
[3] Mamun M S A, Ahmed M. Integrated pest management in tea: prospects and future strategies in Bangladesh[J]. The Journal of Plant Protection Sciences, 2011, 3(2): 1-13.
[4] 张汉鹄. 我国茶树尺蛾区系考查[J]. 茶叶科学, 2001, 21(2): 157-160.
[5] 张汉鹄. 中国茶树害虫及其无公害治理[J]. 昆虫知识, 2006, 43(2): 183.
[6] 熊兴平. 茶尺蠖防治技术研究进展及展望[J]. 中国茶叶, 2003, 25(3): 15-17.
[7] 殷坤山, 熊兴平. 温度对茶尺蠖繁殖力的影响[J]. 中国茶叶, 1994, 16(2): 18-19.
[8] 瞿云明, 江永跃. 茶尺蠖暴发原因和无公害防治技术[J]. 蚕桑茶叶通讯, 2008(3): 40.
[9] 张伟, 沈丽, 蒋凡, 等. 四川省2009年茶银尺蠖爆发原因及防治[J]. 四川农业科技, 2009(8): 38-39.
[10] 王天喜, 刘榜兵, 吴娅. 玉屏县茶尺蠖的发生与防治[J]. 植物医生, 2012(3): 24-25.
[11] Antony B, Sinu P A, Rehman A.Looper caterpillar invasion in North East Indian tea agro-ecosystem: change of weather and habitat loss may be possible causes?[J]. Journal of Tea Science Research, 2012, 2(1): 1-5.
[12] 王勇, 张汉鹄, 邹运鼎. 彩纸对茶尺蠖幼虫诱集效率的研究[J]. 植物保护学报, 1991, 18(2): 173-176.
[13] 殷坤山, 熊兴平. 茶尺蠖发育历期和有效积温的研究[J]. 植物保护, 1995, 21(1): 16-18.
[14] 刘金根. 茶尺蠖在皖南茶区的发生及综合防治[J]. 蚕桑茶叶通讯, 1998(1): 8-9.
[15] 任红楼, 吕立哲, 赵丰华, 等. 5种新型低毒农药对茶尺蠖的田间防控效果研究[J]. 中国茶叶, 2013, 35(4): 28-29.
[16] 周顺玉, 尹健, 马俊义. 几种植物源农药对两种茶树害虫的防治效果[J]. 植物病虫害研究: 英文版, 2013(4): 68-71.
[17] 王国昌, 孙晓玲, 董文霞, 等. 不同温度下鞍形花蟹蛛亚成蛛对茶尺蠖 3 日龄幼虫的捕食功能[J]. 茶叶科学, 2010, 30(3): 173-176.
[18] 刘琴. 茶尺蠖病毒与苏云金杆菌增强防治茶尺蠖作用效果的研究和应用[D]. 南京: 南京农业大学, 2005.
[19] 韩宝瑜, 周鹏, 付建玉, 等. 昆虫化学信息素诱集绒茧蜂控制茶尺蠖的研究[J]. 茶叶科学, 2006, 26(1): 72-75.
[20] 孙晓玲, 陈宗懋. 基于化学生态学构建茶园害虫无公害防治技术体系[J]. 茶叶科学, 2009, 29(2): 136-143.
[21] 古德祥, 朱麟. 植物抗虫性概念的当代内涵[J]. 昆虫知识, 1999, 6: 16.
[22] 李新岗, 刘惠霞, 黄建. 虫害诱导植物防御的分子机理研究进展[J]. 应用生态学报, 2008, 19(4): 893-900.
[23] Agrawal A A, Strauss S Y, Stout M J.Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish[J]. Evolution, 1999: 1093-1104.
[24] Agrawal A A.Induced responses to herbivory and increased plant performance[J]. Science, 1998, 279(5354): 1201-1202.
[25] 刘志源, 孙玉诚, 王国红. 植物与植食性昆虫相互作用的分子机制[J]. 应用昆虫学报, 2013, 49(6): 1696-1702.
[26] 曾莉, 王平盛. 茶树对假眼小绿叶蝉的抗性研究[J]. 茶叶科学, 2001, 21(2): 90-93.
[27] 刘奕清, 徐泽, 周正科, 等. 茶树品种抗侧多食跗线螨的形态和生化特征[J]. 中国茶叶, 2000, 22(1): 14-15.
[28] 郑高云, 梁丽云, 杨云秋, 等. 茶树抗虫性的物质基础[J]. 茶业通报, 2008(1): 16-18.
[29] 郑高云. 不同茶树品种对茶尺蠖抗性机制的研究[D]. 合肥: 安徽农业大学, 2008.
[30] 杨丽丽. 茶树品种对茶赤叶斑病和茶尺蠖抗性机制的初步研究[D]. 合肥: 安徽农业大学, 2009: 6.
[31] 陈华才, 许宁. 游离氨基酸含量与茶树抗螨性的关系[J]. 植物保护学报, 2000, 27(4): 338-342.
[32] 章金明. MeSA、叶蝉为害和机械刺伤对茶芽挥发物及PAL、PPO酶活性影响[D]. 北京: 中国农业科学院, 2006.
[33] Yang Z W, Duan X N, Jin S, et al. Regurgitant Derived From the Tea Geometrid Ectropis obliqua Suppresses Wound-Induced Polyphenol Oxidases Activity in Tea Plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751.
[34] Constabel C P, Barbehenn R.Defensive roles of polyphenol oxidase in plants[M]// Springer Netherlands. Induced Plant Resistance to Herbivory, 2008: 253-270. DOI: 10.1007/978-1-4020-8182-8_12.
[35] 王曼玲, 胡中立, 周明全, 等. 植物多酚氧化酶的研究进展[J]. 植物学通报, 2005, 22(2): 215-222.
[36] 严重玲, 洪业汤, 付舜珍. Cd, Pb胁迫对烟草叶片中活性氧清除系统的影响[J]. 生态学报, 1997, 17(5): 488-492.
[37] 於丙军, 刘友良. 盐胁迫对一年生盐生野大豆幼苗活性氧代谢的影响[J]. 西北植物学报, 2003, 23(1): 18-22.
[38] 李元, 高潇潇, 高召华, 等. UV-B辐射和稻瘟病菌胁迫对水稻幼苗苯丙氨酸解氨酶活性和类黄酮含量的影响[J]. 中国生态农业学报, 2010, 18(4): 856-860.
[39] 段晓娜. 多酚氧化酶对茶尺蠖幼虫的抗虫功能[D]. 长春: 东北师范大学, 2011.
[40] 桂连友, 刘树生, 陈宗懋. 外源茉莉酸和茉莉酸甲酯诱导植物抗虫作用及其机理[J]. 昆虫学报, 2004, 47(4): 507-514.
[41] 韦朝领, 童鑫, 高香凤, 等. 茶树对茶尺蠖取食危害的补偿光合生理反应研究[J]. 安徽农业大学学报, 2007, 34(3): 355-359.
[42] Ballaré C L.Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals[J]. Trends in Plant Science, 2011, 16(5): 249-257.
[43] Laothawornkitkul J, Paul N D, Vickers C E, et al. Isoprene emissions influence herbivore feeding decisions[J]. Plant Cell & Environment, 2008, 31(10): 1410-1415.
[44] 蔡晓明. 三种茶树害虫诱导茶树挥发物的释放规律[D]. 北京: 中国农业科学院研究生院, 2009.
[45] Degenhardt D C, Lincoln D E.Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure[J]. Journal of Chemical Ecology, 2006, 32(4): 725-743.
[46] 陈宗懋, 许宁, 韩宝瑜, 等. 茶树—害虫—天敌间的化学信息联系[J]. 茶叶科学, 2003, 23(增刊1): 38-45.
[47] 王国昌. 三种害虫诱导茶树挥发物的生态功能[D]. 北京:中国农业科学院研究生院, 2010.
[48] 韦朝领, 高香凤, 叶爱华, 等. 基于DDRT-PCR研究茶树对茶尺蠖取食诱导的基因表达谱差异[J]. 茶叶科学, 2007, 27(2): 133-140.
[49] 曹士先. 基于cDNA-AFLP筛选茶树被茶尺蠖取食诱导的相关差异基因及SAMT的克隆与表达分析[D]. 合肥: 安徽农业大学, 2012.
[50] 童鑫. 基于SSH技术研究茶树被茶尺蠖取食诱导的基因差异表达[D]. 合肥: 安徽农业大学, 2010.
[51] 乔金莲, 张娅婷, 朱小佩, 等. 从茶树幼苗中分离茶尺蠖取食诱导的基因[J]. 园艺学报, 2011, 38(4): 783-789.
[52] Clapham D E.Calcium signaling[J]. Cell, 1995, 80(2): 259-268.
[53] Sakamoto K, Tada Y, Yokozeki Y, et al. Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats[J]. Plant Molecular Biology, 1999, 40(5): 847-855.
[54] Singh K B, Foley R C, Oñate-Sánchez L.Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5): 430-436.
[55] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over‐expressing an MYB transcription factor[J]. The Plant Journal, 2005, 42(2): 218-235.
[56] Kampinga H H.Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins[J]. Journal of Cell Science, 1993, 104(1): 11-17.
[57] Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Proceedings of the National Academy of Sciences, 1997, 94(13): 7098-7102.
[58] Edqvist J, Rönnberg E, Rosenquist S, et al. Plants express a lipid transfer protein with high similarity to mammalian sterol carrier protein-2[J]. Journal of Biological Chemistry, 2004, 279(51): 53544-53553.
[59] Baldwin S A, Beal P R, Yao S Y, et al. The equilibrative nucleoside transporter family, SLC29[J]. Pflüegers Archiv, 2004, 447(5): 735-743.
[60] Nowak R S, Caldwell M M.A test of compensatory photosynthesis in the field: implications for herbivory tolerance[J]. Oecologia, 1984, 61(3): 311-318.
[61] Oleksyn J, Karolewski P, Giertych M J, et al. Primary and secondary host plants differ in leaf‐level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni[J]. New Phytologist, 1998, 140(2): 239-249.
[62] 李跃强, 宣维健, 王红托, 等. 棉花对棉铃虫为害超补偿作用的生理机制[J]. 昆虫学报, 2003, 46(3): 267-271.
[63] Caplan A J, Cyr D M, Douglas M G.Eukaryotic homologues of Escherichia coli dnaJ: a diverse protein family that functions with hsp70 stress proteins[J]. Molecular Biology of the Cell, 1993, 4(6): 555.
[64] Clemens S.Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta, 2001, 212(4): 475-486.
[65] Liu X, Williams C E, Nemacheck J A, et al. Reactive oxygen species are involved in plant defense against a gall midge[J]. Plant Physiology, 2010, 152(2): 985-999.
[66] Koiwa H, Shade R E, Zhu-Salzman K, et al. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm[J]. Febs Letters, 2000, 471(1): 67-70.
[67] Kim Y, Uefuji H, Ogita S, et al. Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control[J]. Transgenic Research, 2006, 15(6): 667-672.
[68] 辛肇军, 孙晓玲, 陈宗懋. 茶树醇脱氢酶基因的表达特征及番茄遗传转化分析[J]. 西北植物学报, 2013, 33(5): 864-871.
[69] 辛肇军, 孙晓玲, 张正群, 等. 茶树脂氢过氧化物裂解酶基因CsiHPL1的克隆及表达[J]. 植物研究, 2013, 33(1): 66-72.
[70] Deng W, Zhang M, Wu J, et al. Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant[J]. Journal of Plant Physiology, 2013, 170(3): 272-282.
[71] 金珊, 孙晓玲, 陈宗懋, 等. 昆虫刺探电位图谱(EPG)技术在茶树抗刺吸式口器害虫研究中的应用[J]. 茶叶科学, 2012, 32(5): 393-401.
[72] 吕文明, 楼云芬, 胡宏基, 等. 不同品种茶树对茶尺蠖的抗性[J]. 中国茶叶, 1990, 12(4): 17.
[73] Tanaka J.Study on the utilization of DNA markers in tea breeding[J]. Bulletin of National Institute of Vegetable and Tea Science, 2006, 5: 113-155.
[74] Wang X C, Zhao Q Y, Ma C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14: 415.
[75] Mcgettigan P A.Transcriptomics in the RNA-seq era[J]. Current Opinion in Chemical Biology, 2013, 17(1): 4-11.