Primers were designed based on p16 gene from Ectropis obliqua nucleopolyhedrovirus in order to optimize the detection method of SYBR Green I real-time fluorescence quantitation PCR for EoNPV, and the standard curve of SYBR Green I real-time fluorescence quantitative PCR for p16 gene was established using the recombinant plasmid DNA as template. Statistic analysis showed that there was a good linear relationship between Ct value and the logarithmic value of plasmid concentrations (R2=0.9981). The sensitivity of the method was 102 copies/μl, and wide detection range of 6 orders of magnitude was obtained. Larave infected at different time were sampled and detected by the method, and the results showed that there was a good linear relation between the logarithmic value of the multiples of gene copies and the infection time (R2=0.9935). Experimental results indicated that the method can identify biological pesticides from qualitative and quantitative aspects, and distinguish the high homology nuclearpolyhedrosisvirus (Euproctis pseudoconspersa nuclearpolyhedrosisvirus) from EoNPV accurately.
[1] Barrois M, Bieche I, Mazoyer S, et al. Real-time PCR-based gene dosage assay for detecting BRCA1 rearrangements in breast-ovarian cancer families[J]. Clin Genet, 2004, 65(2): 131-136.
[2] Baskin D G, Bastian L S.Immuno-laser capture microdissection of rat brain neurons for real time quantitative PCR[J]. Methods Mol Biol, 2010, 588: 219-230.
[3] Batista-Dos-Santos S, Raiol M, Santos S, et al. Real-time PCR diagnosis of Plasmodium vivax among blood donors[J]. Malar J, 2012, 11(1): 345.
[4] Bauer M, Patzelt D.Identification of menstrual blood by real time RT-PCR: technical improvements and the practical value of negative test results[J]. Forensic Sci Int, 2008, 174(1): 55-59.
[5] Becker S, Franco J R, Simarro PP, et al. Real-time PCR for detection of Trypanosoma brucei in human blood samples[J]. Diagn Microbiol Infect Dis, 2004, 50(3): 193-199.
[6] Behets J, Declerck P, Delaedt Y, et al. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples[J]. Water Res, 2007, 41(1): 118-126.
[7] Bel Y, Ferre J, Baltassar E, et al. Quantitative real-time PCR with SYBR Green detection to assess gene duplication in insects: study of gene dosage in Drosophila melanogaster (Diptera) and in Ostrinia nubilalis (Lepidoptera)[J]. BMC Res Notes, 2011, 4: 84.
[8] Bell A S, Blanford S, Jenkins N, et al. Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria: technique validation and first applications[J]. J Invertebr Pathol, 2009, 100(3): 160-168.
[9] Bernard P S, Wittwer C T.Real-time PCR technology for cancer diagnostics[J]. Clin Chem, 2002, 48(8): 1178-1185.
[10] Berrada H, Soriano J M, Pico Y, et al. Quantification of Listeria monocytogenes in salads by real time quantitative PCR[J]. Int J Food Microbiol, 2006, 107(2): 202-206.
[11] Bidet P, Liguori S, Lauzanne De A, et al. Real-time PCR measurement of persistence of Bordetella pertussis DNA in nasopharyngeal secretions during antibiotic treatment of young children with pertussis[J]. J Clin Microbiol, 2008, 46(11): 3636-3638
[12] 姚勤, 高路, 陈克平, 等. 荧光定量PCR检测家蚕核型多角体病毒在其宿主体内的增殖动态[J]. 昆虫学报, 2005 (6): 871-875.
[13] 乔鲁芹, 曲良建, 王玉珠, 等. 美国白蛾核型多角体病毒实时荧光定量PCR检测方法的建立及应用[J]. 昆虫学报, 2010, 53(7): 824-830.
[14] 张益民, 王学兰, 张世敏. 茶尺蠖核型多角体病毒超微结构的初步研究[J]. 科学通报, 1985(24): 1918-1920.
[15] 殷坤山, 陈华才. 喷施茶尺蠖病毒杀虫剂对茶叶品质的影响[J]. 中国茶叶, 2002, 24(4): 5.
[16] 杜军利, 张传溪, 肖强, 等. 茶尺蠖核型多角体病毒荧光定量PCR检测方法的建立[J]. 茶叶科学, 2010, 30(3): 203-207.
[17] Rutledge RG, Stewart D.Critical evaluation of methods used to determine amplification efficiency refutes the exponential character of real-time PCR[J]. BMC Molecular Biology, 2008, 9: 96.
[18] Karlen Y, McNair A, Perseguers S, et al. Statistical significance of quantitative PCR[J/OL]. BMC Bioinformatics, 2007, 8: 131. doi: 10.1186/1471-2105-8-131.
[19] Feng J, Zeng R, Chen J.Accurate and efficient data processing for quantitative real-time PCR using a tripartite plant virus as a model[J/OL]. Biotechniques, 2008, 44: 901-912. doi: 10.2144/000112750.
[20] 杨发龙, 岳华, 张焕容, 等. Real-time PCR在病毒学研究中的应用[J]. Heilongjiang Animal Science and Veterinary Medicine, 2008(3): 22-23.
[21] 王学波, 李建远. 人线粒体DNA荧光定量PCR 检测方法的建立[J]. 生物医学工程研究, 2008, 27(4): 298-301.
[22] Swillens S, Dessars B, Housni HE.Revisiting the sigmoidal curve fitting applied to quantitative real-time PCR data[J/OL]. Anal Biochem, 2008, 373: 370-376. doi: 10.1016/j.ab.2007.10.019.
[23] Tichopad A, Dilger M, Schwarz G, et al. Standardized determination of real-time PCR efficiency from a single reaction set-up[J/OL]. Nucleic Acids Res, 2003, 31: e122. doi: 10.1093/nar/gng122.
[24] Schefe J H, Lehmann K E, Buschmann I R, et al. Quantitative real-time RT-PCR data analysis: current concepts and the novel ‘gene expression's CT difference’ formula[J]. Journal of Molecular Medicine, 2006, 84(11): 901-910.
[25] Santhosh S R, Parida M M, Dash P K, et al. Development and evaluation of SYBR Green I-based one step real-time RT-PCR assay for detection and quantification of Chikungunya virus[J]. Journal of Clinical Virology, 2007, 39: 188-193.
[26] 殷坤山, 陈华才, 肖强, 等. 茶尺蠖核型多角体病毒制剂的试制与推广应用[J]. 中国病毒学, 2000, 15: 81-84.
[27] 冷杨, 肖强, 殷坤山. 茶毛虫核型多角体病毒Bt混剂的作用特性[J]. 植物保护学报, 2007, 34(2): 177-181.
[28] Ozaki H, McLaughlin L W. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer[J]. Nucleic Acids Res, 1992, 20(19): 5205-5214.
[29] Mackay M, Arden KE, Nitsche A.Real-time fluorescent PCR techniques to study microbial-host interactions. Methods in Microbiology[J]. 2004, 34: 255-330.