Welcome to Journal of Tea Science,Today is

Application of Bayes Stepwise Discrimination Analysis on Chemical Recognition of Green Tea with Chestnut-like Aroma

  • YE Guo-zhu ,
  • YUAN Hai-bo ,
  • JIANG Yong-wen ,
  • YIN Jun-feng ,
  • WANG Fang ,
  • CHEN Jian-xin
Expand
  • 1. Tea Research Institute, Chinese Academy of Agriculture Science, Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China

Received date: 2008-07-25

  Revised date: 2008-10-22

  Online published: 2019-09-06

Abstract

The teas are classified into two categories—teas with chestnut-like aroma and other ones without chestnut-like aroma, according to the organoleptic evaluation results carried out by experienced experts. The screening process was conducted on the common components of teas with chestnut-like aroma along with the Bayes stepwise screening process, and set the aromatic components after screening as the variables. Then the discrimination equation was established. Results of cross-validation and validation of testing samples demonstrated that the correct rates of discrimination equation, established by cis-jasmone and geranylacetone, reached 94.44% in both discrimination analysis and cross-validation of training dataset, and the 8 testing samples are judged correctly, the correct rates of discrimination was 100%, Thus, it can be concluded that the discrimination equation worked effectively and the results was satisfactory. In addition, it can be seen that the chestnut-like aroma could be distinguished effectively by the selected variables in the principal components figure of cis-jasmone and geranylacetone.

Cite this article

YE Guo-zhu , YUAN Hai-bo , JIANG Yong-wen , YIN Jun-feng , WANG Fang , CHEN Jian-xin . Application of Bayes Stepwise Discrimination Analysis on Chemical Recognition of Green Tea with Chestnut-like Aroma[J]. Journal of Tea Science, 2009 , 29(1) : 27 -33 . DOI: 10.13305/j.cnki.jts.2009.1.005

References

[1] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003.
[2] 卢伟. 模式识别方法及在水质与产品分类上的应用[D]. 南京: 南京工业大学, 2004.
[3] 樊欣, 邵谦谦. SAS 8.X经济统计[M]. 北京: 北京希望电子出版社, 2003.
[4] 陈华, 郁志勇, 朱国斌. 中国白酒香型的化学模式识别(Ⅲ)——判别分析[J]. 食品科学, 2000, 21(9): 48~52.
[5] 林鸿洲, 邹懿玉. 新编统计学原理[M]. 北京: 高等教育出版社, 1997.
[6] 吴华意, 陈振武, 张尧庭. 判别分析中变量的选择——附加信息检验法[J]. 数学物理学报, 1995, 15(4): 427~434.
[7] 李磊, 吴启勋, 宋萍. 盐湖水化学类型的判别分析研究[J]. 盐湖研究, 2004, 12(1): 46~50.
[8] 卢思广, 高梅, 高莉莉. 难治性肾病的判别及危险因素分析[J]. 徐州医学院学报, 2000, 20(2): 112~114.
[9] 陈诤词, 黄培林. 逐步判别分析在评估大肠癌预后临床病理因素中的应用[J]. 数理医药学杂志, 1995, 8(3): 247~249.
[10] 陈小敏, 杨香玖. 2型糖尿病肾病的相关危险因素[J]. 福建医科大学学报, 2005, 39(2): 206~208.
[11] 谢南屏, 陈平雁. 108例突聋预后多因素分析[J]. 听力学及言语疾病杂志, 1995, 3(1): 53~54.
[12] 何树红, 王善民, 毛娟芳. 基于变量逐步的Bayes信用风险判别模型[J]. 云南大学学报, 2007, 29(5): 433~437.
[13] 冯启明, 李慕军, 黄星, 等. 逐步判别分析在妊高征预测性诊断中的应用[J]. 数理医药学杂志, 2005, 18(6): 620~622.
[14] Wun liyan, Li Xinghua, Zhu Guobin. Multivariate Discriminant Analysis Of Flavor Types of White Wines, Proceedings of 10th IGWT Symposium[M]. Beijing: Peking University Press,1995.
[15] 崔巍伟, 王憬, 林智平. 啤酒花挥发性组分的分析及其在酒花类型区分中的应用研究[J]. 啤酒科技, 2006(11): 21~27.
[16] 于慧春. 基于电子鼻技术的茶叶品质检测研究[D]. 杭州: 浙江大学, 2007.
Outlines

/