The impacts of aluminum (Al) concentration on root cell membrane permeability and components of organic acids in root exudates of tea plant (Camellia. sinensis L.) were investigated by hydroponics. Results showed that 20mg/L of low Al concentration could enhance the cell membrane stability of tea root, and the membrane permeability was significantly declined with deficiency Al (0mg/L, CK) and high Al (100mg/L) treatments. The total organic acids firstly decreased and then increased with the increase of Al concentrations. About 85%~93% of the total organic acids in root exudates of tea plant were oxalic acid, malic acid and citric acid. Compared with CK, the oxalic acid secretion remarkably reduced 84.7% and 34.3% under the low and high Al concentration treatments. Compared with CK, the malic acid of root exudates increased by 121.1% in low Al concentration, and decreased by 40.9% in high Al concentration. There wasn’t significant influence on citric acid, containing about 3.5~4.5mg/g. This result can provide critical data for elucidating tolerance mechanisms of Al stress on tea root.
LIU Teng-teng
,
GAO Hong-jian
,
WAN Xiao-chun
,
ZHANG Zheng-zhu
. Impacts of Aluminum on Root Cell Membrane Permeability and Organic Acids in Root Exudates of Tea Plant[J]. Journal of Tea Science, 2011
, 31(5)
: 458
-462
.
DOI: 10.13305/j.cnki.jts.2011.05.015
[1] 向勤锃, 刘德华. 茶树富铝的研究进展及展望[J]. 茶叶通讯, 2003(2): 33-36.
[2] 吴琼鸯, 郑伟伟, 罗亮, 等. 铝对茶树根系生理的影响[J]. 湖北农业科学, 2005(3): 80-82.
[3] 管致和. 植物保护概论[M]. 北京: 中国农业大学出版社, 1995: 106-120.
[4] 沈仁芳. 铝在土壤—植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008: 73-88.
[5] Morita A, Fuji Y, Yokota H.Effect of aluminium on exudation of organic acid anions in tea plants[C]. Plant nutrition Food security and sustainability of agro-ecosystems. Hannover. Germany: Kluwer Academic Publishers, 2001: 508-509.
[6] 王小平, 刘鹏, 罗虹, 等. 铝氟交互处理对茶树生理特性的影响[J]. 园艺学报, 2009, 36(9): 1359-1364.
[7] 潘根生, 小西茂毅. 供铝条件下氮对茶苗生长发育的影响[J]. 浙江农业大学学报, 1995, 21(5): 461-464.
[8] 严小龙. 根系生物学—原理与应用[M]. 北京: 科学出版社, 2007: 147-157.
[9] 刘芷宇. 根际研究法[M]. 南京:江苏科技出版社, 1997: 50-63.
[10] 中华人民共和国卫生部. GB/T 5009.157-2003. 食品中有机酸的测定[S]. 北京: 中国标准出版社, 2003.
[11] 郑炳松. 现代植物生理生化研究技术[M]. 北京: 气象出版社, 2006: 10.
[12] 孟和, 沈明泉. 农业生物基础实验教程[M]. 上海: 上海科学技术文献出版社, 2006: 199-200.
[13] 王水良, 王平, 王趁义. 铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化[J]. 生态与农村环境学报, 2010, 26(1): 87-91.
[14] 《中国茶学辞典》编纂委员会. 中国茶学辞典[M]. 上海: 上海科学技术出版社, 1995.
[15] Lindberg S.Aluminum in interactions with K+ (86Rb+)and 45Ca2+ fluxes in three cultivars of sugar beet[J]. Physiologia Plantarum, 1990, 79(2): 275-283.
[16] 鲁如坤. 土壤–植物营养学原理和施肥[M]. 北京: 化学工业出版社, 1998: 57.
[17] 孙琴, 倪吾钟, 杨肖娥. 有机酸在植物解铝毒中的作用及生理机制[J]. 植物学通报, 2002, 19(4): 496-503.
[18] 凌桂芝, 石保峰, 黄永禄, 等. 铝胁迫下黑麦根尖分泌有机酸和钾离子的研究[J]. 植物营养与肥料学报, 2010, 16(4): 893-898.
[19] 李德华, 黄升谋, 贺立源, 等. 植物根系有机酸的分泌和解铝毒作用[J]. 植物生理学通讯, 2004, 40(4): 505-510.
杨志敏, 汪瑾. 植物耐铝的生物化学与分子机理[J]. 植物生理与分子生物学学报, 2003, 29(5): 361-363.