Extracts of raw and ripe Pu-erh tea were prepared from tea dust during processing. The antioxidtive activities of extracts were evaluated by ABTS and FRAP systems. The potentially protective effects of extracts on human umbilical vascular endothelial cells(HUVEC) were investigated in Na2S2O3-induction model. The results showed that the extract of raw Pu-erh tea had stronger antioxidtive activity than that of ripe Pu-erh tea in both test systems. But extract of ripe Pu-erh tea showed a less protective effect than that of extract of raw Pu-erh tea on the HUVEC cell damage induced by Na2S2O3, and relevent with tea polyphenols under certain concentrations.
WANG Yue-fei
,
LUO Zi-hua
,
WU Xin-rong
,
CHEN Hong-bo
,
XU Ping
,
YANG Xian-qiang
. Antioxidtive Activities of Pu-erh Tea Extracts and Their Protective Effect on HUVEC Damage Induced by Na2S2O3[J]. Journal of Tea Science, 2010
, 30(6)
: 475
-481
.
DOI: 10.13305/j.cnki.jts.2010.06.012
[1] 吕海鹏, 钟秋生, 林智. 陈香普洱茶的香气成分研究[J]. 茶叶科学, 2009, 29(3): 219-224.
[2] 吕海鹏, 谷记平, 林智, 等. 普洱茶的化学成分及生物活性研究进展[J]. 茶叶科学, 2007, 27(1): 8-18.
[3] Syu K Y, Lin C L, Huang H C, et al. Determination of Theanine, GABA, and Other Amino Acids in Green, Oolong, Black, and Pu-erh Teas with Dabsylation and High-Performance Liquid Chromatography[J]. J Agric Food Chem, 2008, 56(17): 7637-7643.
[4] 林智, 吕海鹏, 崔文锐, 等. 普洱茶的抗氧化酚类化学成分的研究[J]. 茶叶科学, 2006, 26(2):112-116.
[5] Jie G L, Lin Z, Zhang L Z, et al. Free Radical Scavenging Effect of Pu-erh Tea Extracts and Their Protective Effect on Oxidative Damage in Human Fibroblast Cells[J]. J Agric Food Chem, 2006, 54(21): 8058-8064.
[6] 张冬英, 邵宛芳, 刘仲华, 等. 普洱茶功能成分单体降糖降脂作用研究[J]. 茶叶科学, 2009, 29(1): 41-46.
[7] Roomi M W, Ivanov V, Kalinovsky T, et al. Anti-angiogenic effects of a nutrient mixture on human umbilical vein endothelial cells[J]. Oncol Rep, 2005, 14(6):1399-1404.
[8] 叶俭慧, 金晶, 梁慧玲, 等. 茶梗木质纤维素对儿茶素类吸附动力学研究[J]. 茶叶科学, 2008, 28(5):313-318.
[9] Shi J Y, Gong J Y, Liu J E, et al. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components[J]. LWT-Food Science and Technology, 2009, 42(2): 477-482.
[10] Wang X G, Wan V C, Hu S X, et al. Study on the increase mechanism of the caffeine content during the fermentation of tea with microorganisms[J]. Food Chemistry, 2008, 107(3): 1086-1091.
[11] 吕海鹏, 林智, 谷记平, 等. 普洱茶中的没食子酸研究[J]. 茶叶科学, 2007 27(2): 104-110.
[12] 杨贤强, 王岳飞, 陈留记, 等. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003: 201-342.
[13] Duh P D, Yen G C, Yen W J, et al. Effects of Pu-erh Tea on Oxidative Damage and Nitric Oxide Scavenging[J]. J Agric Food Chem, 2004, 52(26): 8169-8176.
[14] Wang B S, Yu H M, Chang L W, et al. Protective effects of Pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells[J]. LWT, 2008, 41(6): 1122-1132.
[15] Lu C H, Hwang L S.Polyphenol contents of Pu-erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line[J]. Food Chemistry, 2008, 111(1): 67-71.