Analyzing the evolution characteristics and agglomeration effect of tea production pattern is of great significance to the planning and layout of tea industry in Guangdong Province. In this study, the spatial gravity center model was introduced. The pattern evolution process and characteristics, and the spatial agglomeration effect of tea production in Guangdong Province were analyzed by using GIS technology and spatial autocorrelation analysis method. Results show that: (1) The planting area and yield of tea in Guangdong Province increased steadily from 1992 to 2017, and the growth rate was more obvious after 2008. (2) There were significant spatial differences in tea production in Guangdong. The northern and eastern Guangdong accounted for more than 85% of the planting area, and more than 83% of yield in Guangdong. The reduction in western Guangdong and the Pearl River Delta was obvious. (3) The center of gravity of tea production in Guangdong Province tended to move eastward and northward. The eastward shift of gravity center of tea planting area and yield reflected that the tea production has been gradually concentrated in east and north of Guangdong. (4) The spatial polarization and spillover of tea production in Guangdong Province were significant. The tea production agglomeration areas in Raoping, Chaoan, Dapu, Fengshun, Wuhua, Xingning, Yingde and Dongyuan were formed, which constituted the ‘hot spots’ of tea production in Guangdong Province, and they had stimulating effects on surrounding counties and cities. (5) Geographical environment and other natural factors were the basis for the expansion of area, the incentive and support of government policy was an important driving force for the formation of tea industry, the huge market consumption power was the direct factor of the rapid development of tea industry, the application and popularization of new cultivars and technologies were the important reasons for the expansion of tea planting area. The results indicate that the spatial agglomeration effect of tea production in Guangdong Province needs to be further strengthened. Next, it is necessary to promote the clustering development of tea production according to regional natural resources, geographical conditions and planting traditions, so as to enhance the market competitiveness of tea in Guangdong Province.
[1] 林正雨, 何鹏, 李晓, 等. 1990—2015年四川省茶叶生产空间演变格局及特征研究[J]. 中国农学通报, 2018, 34(31): 76-84.
Lin Z Y, He P, Li X, et al.Spatial structure evolution of tea production in Sichuan Province, 1990 to 2015[J]. Chinese Agricultural Science Bulletin, 2018, 34(31): 76-84.
[2] 黄修杰, 钟钰. 农产品区域布局与农业经济增长研究——基于广东省主要农产品空间布局变化的实证检验[J]. 中国农业资源与区划, 2017, 38(7): 101-107.
Huang X J, Zhong Y.Research on relationship between agricultural industry agglomeration and agricultural economic growth——an empirical analysis of spatial agglomeration change of main agricultural industry in Guangdong Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(7): 101-107.
[3] 梁书民. 中国农业种植结构及演化的空间分布和原因分析[J]. 中国农业资源与区划, 2006, 27(2): 29-34.
Liang S M.Space distribution and reason analysis of the changes in agriculture planting structure of China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2006, 27(2): 29-34.
[4] 李二玲, 庞安超, 朱纪广. 中国农业地理集聚格局演化及其机制[J]. 地理研究, 2012, 31(5): 885-898.
Li E L, Pang A C, Zhu J G.Analysis of the evolution path and mechanism of China’s agricultural agglomeration and geographic pattern[J]. Geographical Research, 2012, 31(5): 885-898.
[5] 邓文, 刘英, 祝琪雅, 等. 湖南优势农产品生产县域布局优化研究[J]. 中国农业资源与区划, 2016, 37(11): 113-118.
Deng W, Liu Y, Zhu Q Y, et al.Layout optimization of superior agricultural products production in Hunan[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 113-118.
[6] 夏龙, 姜德娟, 隋文香. 中国地理标志农产品的空间分布与增收效应[J]. 产经评论, 2015(1): 78-91.
Xia L, Jiang D J, Sui W X.Spatial distribution characteristics of geographical indication and farmer income growth[J]. Industrial Economic Review, 2015(1): 78-91.
[7] 王彩峰, 史建民. 山东省苹果种植面积的时空演变特征分析[J]. 中国农业资源与区划, 2017, 38(12): 170-177.
Wang C F, Shi J M.Study of spatio-temporal evolution characteristics of apple planting area in Shandong Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(12): 170-177.
[8] 韩振兴, 刘宗志, 常向阳. 山西省特色农业产业集群集中度和竞争力分析——以运城苹果、朔州羊肉、晋城大豆为例[J]. 中国农业资源与区划, 2018, 39(11): 94-104.
Han Z X, Liu Z Z, Chang X Y.Analysis on the concentration and competitiveness of characteristic agricultural industrial clusters in Shanxi Province—Take Yuncheng apple, Shuozhou mutton, Jincheng soybean as an example[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 94-104.
[9] 穆维松, 李程程, 高阳, 等. 我国葡萄生产空间布局特征研究[J]. 中国农业资源与区划, 2016, 37(2): 168-176.
Mu W S, Li C C, Gao Y.Research on the spatial features of grape production in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(2): 168-176.
[10] 杨宗辉, 蔡鸿毅, 陈珏颖, 等. 我国玉米生产空间布局变迁及其影响因素分析[J]. 中国农业资源与区划, 2018, 39(12): 169-176.
Yang Z H, Cai H Y, Chen J Y, et al.Analysis on the change of maize production spatial layout and its influencing factors[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 169-176.
[11] 杨亚东, 胡韵菲, 栗欣如, 等. 中国马铃薯种植空间格局演变及其驱动因素分析[J]. 农业技术经济, 2017(8): 39-47.
Yang Y D, Hu Y F, Li X R, et al.Analysis of spatial pattern evolution and driving factors of potato planting in China[J]. Journal of Agrotechnical Economics, 2017(8): 39-47.
[12] 肖智, 黄贤金, 孟浩, 等. 2009-2014年中国茶叶生产空间演变格局及变化特征[J]. 地理研究, 2017, 36(1): 109-120.
Xiao Z, Huang X J, Meng H, et al.Spatial structure and evolution of tea production in China from 2009 to 2014[J]. Geographical Research, 2017, 36(1): 109-120.
[13] 肖智, 黄贤金. 长江经济带茶叶生产空间格局演变[J]. 经济地理, 2017, 37(5): 110-115.
Xiao Z, Huang X J.Spatial characteristics of tea production in the Yangtze River Economic Zone[J]. Economic Geography, 2017, 37(5): 110-115.
[14] 税伟, 杜勇, 陈毅萍, 等.基于地理加权回归的茶叶种植专业化空间格局及影响因素——以福建省安溪县为例[J]. 应用生态学报, 2017, 28(4): 1298-1308.
Shui W, Du Y, Chen Y P.Spatial patterns and influence factors of specialization in tea cultivation based on geographically weighted regression model: A case study of Anxi County of Fujian Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1298-1308.
[15] Shiliang Su, Chen Wan, Jing Li, et al.Economic benefit and ecological cost of enlarging tea cultivation in subtropical China: Characterizing the trade-off for policy implications[J]. Land Use Policy, 2017, 66: 183-195.
[16] 周敏, 刘志华, 孙叶飞, 等. 中国新型城镇化的空间集聚效应与驱动机制——基于省级面板数据空间计量分析[J]. 工业技术经济, 2018(9): 59-67.
Zhou M, Liu Z H, Sun Y F, et al.The spatial agglomeration effect and driving mechanism of new urbanization in China--Based on the spatial econometric analysis of provincial panel data[J]. Journal of Industrial Technological Economics, 2018(9): 59-67.
[17] 林正雨, 何鹏, 李晓, 等. 四川省农业地理集聚格局及演化机制研究[J]. 中国农业资源与区划, 2017, 38(1): 207-215.
Lin Z Y, He P, Li X, et al.The pattern and mechanism of agricultural geographical agglomeration in Sichuan Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(1): 207-215.
[18] 陈彦光. 基于Moran统计量的空间自相关理论发展和方法改进[J]. 地理研究, 2009, 28(6): 1449-1463.
Chen Y G.Reconstructing the mathematical process of spatial autocorrelation based on Moran's statistics[J]. Geographical Research, 2009, 28(6): 1449-1463.
[19] 武鹏, 李同昇, 李卫民. 县域农村贫困化空间分异及其影响因素——以陕西山阳县为例[J]. 地理研究, 2018, 37(3): 593-606.
Wu P, Li T S, Li W M.Spatial differentiation and influencing factors analysis of rural poverty at county scale: A case study of Shanyang County in Shaanxi Province, China[J]. Geographical Research, 2018, 37(3): 593-606.
[20] 万鲁河, 王绍巍, 陈晓红. 基于GeoDA的哈大齐工业走廊GDP空间关联性[J]. 地理研究, 2011, 30(6): 977-984.
Wan L H, Wang S W, Chen X H.GeoDA-based spatial correlation analysis of GDP in Hadaqi industrial corridor[J]. Geographical Research, 2011, 30(6): 977-984.
[21] 许树辉. 产业转移下的广东省制造业空间集聚与区际分工演变——基于2005—2014年统计数据[J]. 热带地理, 2017, 37(3): 347-355.
Xu S H.Evolution of spatial agglomeration of manufacturing industry and regional division of labor driven in Guangdong Province under the industrial transfer: based on the analysis of statistical data during 2005-2014[J]. Tropical Geography, 2017, 37(3): 347-355.