[1] Chen L, Chen X W, Huang X, et al.Regulation of glucose and lipid metabolism in health and disease[J]. Science China Life Sciences, 2019, 62: 1420-1458.
[2] Palermo A, Tuccinardi D, Defeudis G, et al.BMI and BMD: The potential interplay between obesity and bone fragility[J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 544. doi: 10.3390/ijerph13060544.
[3] 折改梅, 张香兰, 陈可可, 等. 茶氨酸和没食子酸在普洱茶中的含量变化[J]. 云南植物研究, 2005, 27(5): 572-576.
She G M, Zhang X L, Chen K K, et al.Content variation of theanine and gallic acid in Pu-er tea[J]. Acta Botanica Yunnanica, 2005, 27(5): 572-576.
[4] 吴桢. 普洱茶渥堆发酵过程中主要生化成分的变化[D]. 重庆: 西南大学, 2008.
Wu Z.The variation of chemical component during the fermentation procedure of Pu'er tea [D]. Chongqing: Southwest University, 2008.
[5] Pedan V, Rohn S, Holinger M, et al.Bioactive compound fingerprint analysis of aged raw Pu'er tea and young ripened Pu'er tea[J]. Molecules, 2018, 23(8): 1931. doi: 10.3390/molecules23081931.
[6] Shao W, Powell C, Clifford M N.The analysis by HPLC of green, black and Pu'er teas produced in Yunnan[J]. Journal of the Science of Food and Agriculture, 1995, 69(4): 535-540.
[7] Lv H P, Zhang Y J, Lin Z, et al.Processing and chemical constituents of Pu-erh tea: A review[J]. Food Research International, 2013, 53(2): 608-618.
[8] 周志宏, 杨崇仁. 云南普洱茶原料晒青毛茶的化学成分[J]. 云南植物研究, 2000(3): 343-350.
Zhou Z H, Yang C R.Chemical constituents of crude green tea, the material of Pu-er tea in Yunnan[J]. Acta Botanica Yunnanica, 2000(3): 343-350.
[9] 张雯洁, 刘玉清, 李兴从, 等. 云南“生态茶”的化学成分[J]. 云南植物研究, 1995(2): 204-208.
Zhang W J, Liu Y Q, Li X C, et al.Chemical constituents of “Ecolocical tea” from Yunnan[J]. Acta Botanica Yunnanica. 1995(2): 204-208.
[10] Diepeningen A D V, Debets A J M, Varga J, et al. Efficient degradation of tannic acid by black Aspergillus species[J]. Fungal Biology, 2004, 108(8): 919-925.
[11] Mukherjee G, Banerjee R.Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus[J]. Journal of Basic Microbiology, 2004, 44(1): 42-48.
[12] 郭鲁宏, 杨顺楷. 利用固定化黑曲霉单宁酶制备没食子酸的研究[J]. 生物工程学报, 2000(5): 614-617.
Guo L H, Yan S K.Study on gallic acid preparation by using immobilized tannase from Aspergillus niger[J]. Chinese Journal of Biotechnology, 2000(5): 614-617.
[13] Anaingsih V K, Sharma A, Zhou W.Green tea catechins during food processing and storage: A review on stability and detection[J]. Food Research International, 2013, 50(2): 469-479.
[14] Macedo J A, Ferreira L R, Camara L E, et al.Chemopreventive potential of the tannase-mediated biotransformation of green tea[J]. Food Chemistry, 2012, 133(2): 358-365.
[15] Tanaka T, Umeki H, Nagai S, et al.Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder[J]. Food Chemistry, 2012, 134(1): 276-281.
[16] Park Y, Lee J, Hong V S, et al.Identification of KMU-3, a novel derivative of gallic acid, as an inhibitor of adipogenesis[J]. Plos One, 2014, 9(10): e109344. doi: 10.1371/journal.pone.0109344.
[17] 吕海鹏, 林智, 谷记平, 等. 普洱茶中的没食子酸研究[J]. 茶叶科学, 2007, 27(2): 104-110.
Lv H P, Lin Z, Gu J P, et al.Study on the gallic acid in Pu-erh tea[J]. Journal of Tea Science, 2007, 27(2): 104-110.
[18] 李肖玲, 崔岚, 祝德秋. 没食子酸生物学作用的研究进展[J]. 中国药师, 2004(10): 767-769.
Li X L, Cui L, Zhu D Q.Research progress on the biological effects of gallic acid[J]. China Pharmacist, 2004(10): 767-769.
[19] 张冬英, 邵宛芳, 刘仲华, 等. 普洱茶中没食子酸对过氧化物酶体增殖激活受体作用研究[J]. 营养学报, 2009, 31(1): 47-50.
Zhang D Y, Shao W F, Liu Z H, et al.Study of gallic acid in Pu-erh tea on the peroxisome proliferators activated receptors function[J]. Acta Nutrimenta Sinica, 2009, 31(1): 47-50.
[20] Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection and Immunity, 2017, 86(1): e00601-17. doi: 10.1128/IAI.00601-17.
[21] Huang H, Lin J.Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet[J]. Food & Function, 2012, 3(2): 170-177.
[22] Gong J, Peng C, Chen T, et al.Effects of theabrownin from Pu-erh Tea on the metabolism of serum lipids in rats: mechanism of action[J]. Journal of Food Science, 2010, 75(6): 182-189.
[23] Du W, Peng S, Liu Z, et al.Hypoglycemic effect of the water extract of Pu-erh tea[J]. Journal of Agricultural and Food Chemistry, 2012, 60(40): 10126-10132.
[24] Kubota K, Sumi S, Tojo H, et al.Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract[J]. Nutrition Research, 2011, 31(6): 421-428.
[25] Silva G, Ferraresi C, De Almeida R T, et al. Insulin resistance is improved in high-fat fed mice by photobiomodulation therapy at 630 nm[J]. Journal of Biophotonics, 2020, 13(3): e201960140. doi: 10.1002/jbio.201960140.
[26] Collison K S, Saleh S M, Bakheet R H, et al.Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55[J]. Obesity (Silver Spring, Md), 2009, 17(11): 2003-2013.
[27] Samuel V T.Fructose induced lipogenesis: from sugar to fat to insulin resistance[J]. Trends in endocrinology and metabolism: TEM, 2011, 22(2): 60-65.
[28] Oi Y, Hou I, Fujita H, et al.Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid[J]. Phytotherapyresearch: PTR, 2012, 26(4): 475-481.
[29] Zeng L, Yan J, Luo L, et al.Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes[J]. Food & Function, 2015, 6(6): 2008-2016.
[30] Zeng X, Sheng Z, Li X, et al.In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid[J]. Journal of the Science of Food and Agriculture, 2019, 99(15): 6882-6892.
[31] Gandhi G R, Jothi G, Antony P J, et al.Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway[J]. European Journal of Pharmacology, 2014, 745(15): 201-216.
[32] Hsu C, Yen G.Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats[J]. British Journal of Nutrition, 2007, 98(4): 727-735.
[33] Huang D W, Chang W C, Wu J S, et al.Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet[J]. Nutrition Research, 2016, 36(2): 150-160.
[34] Paraíso A F, Sousa J N, Andrade J M, et al.Oral gallic acid improves metabolic profile by modulating SIRT1 expression in obese mice brown adipose tissue: A molecular and bioinformatic approach[J]. Life sciences, 2019, 237(11): 116914. doi: 10.1016/j.lfs.2019.116914.
[35] Bak E J, Kim J, Jang S, et al.Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice[J]. Scandinavian Journal of Clinical & Laboratory Investigation, 2013, 73(8): 607-614.
[36] Hsu C, Huang S, Yen G.Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 Preadipocytes in Relation to their antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2006, 54(12): 4191-4197.
[37] Variya B C, Bakrania A K, Patel S S.Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling[J]. Phytomedicine, 2019, 73: 152906. doi: 10.1016/j.phymed.2019.152906.
[38] 吕季桦, 孙璐西. 普洱茶抑制HepG2细胞株生合成胆固醇之有效成分探讨[C]//中国茶叶学会. 第四届海峡两岸茶业学术研讨会论文集, 2006.
Lv J H, Sun L X.Investigation of Pu-erh tea active principles to inhibitthe cholesterol synthesis in Hep G2cell line[C]// China Tea Scienc Society. The Fourth Cross-Straits Tea Industry Proceedings, 2006.
[39] Way T, Lin H, Kuo D, et al.Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5257-5264.
[40] Elrokh E M, Yassin N A Z, Elshenawy S M, et al. Antihypercholesterolaemic effect of ginger rhizome (Zingiber officinale) in rats[J]. Inflammopharmacology, 2010, 18(6): 309-315.
[41] Okuno A, Tamemoto H, Tobe K, et al.Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats[J]. Journal of Clinical Investigation, 1998, 101(6): 1354-1361.
[42] Chao L C, Marcussamuels B, Mason M, et al.Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones[J]. Journal of Clinical Investigation, 2000, 106(10): 1221-1228.
[43] Cao Z, Umek R M, Mcknight S L.Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells[J]. Genes & Development, 1991, 5(9): 1538-1552.
[44] Farmer S R.Transcriptional control of adipocyte formation[J]. Cell Metabolism, 2006, 4(4): 263-273.
[45] Furuyashiki T, Nagayasu H, Aoki Y, et al.Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARγ2 and C/EBPα in 3T3-L1 cells[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(11): 2353-2359.
[46] Huang D W, Shen S C.Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes[J]. Journal of Functional Foods, 2012, 4(1): 358-366.
[47] Saltiel A R, Kahn C R.Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865): 799-806.
[48] Ferrer J C, Favre C, Gomis R R, et al.Control of glycogen deposition[J]. FEBS Letters, 2003, 546(1): 127-132.
[49] Cannon B, Nedergaard J.Brown adipose tissue: function and physiological significance[J]. Physiological Reviews, 2004, 84(1): 277-359.
[50] Oelkrug R, Polymeropoulos E T, Jastroch M.Brown adipose tissue: physiological function and evolutionary significance[J]. Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology, 2015, 185(6): 587-606.
[51] Bartelt A, Heeren J.Adipose tissue browning and metabolic health[J]. Nature Reviews Endocrinology, 2014, 10(1): 24-36.
[52] Doan K V, Ko C M, Kinyua A W, et al.Gallic acid regulates body weight and glucose homeostasis through AMPK activation[J]. Endocrinology, 2015, 156(1): 157-168.
[53] Oneill H M, Holloway G P, Steinberg G R.AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity[J]. Molecular and Cellular Endocrinology, 2013, 366(2): 135-151.
[54] Hardie D G.AMPK: a target for drugs and natural products with effects on both diabetes and cancer[J]. Diabetes, 2013, 62(7): 2164-2172.
[55] Liesa M, Shirihai O S.Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure[J]. Cell Metabolism, 2013, 17(4): 491-506.
[56] Kim J, Kundu M, Viollet B, et al.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology, 2011, 13(2): 132-141.
[57] Zhao M, Klionsky D J.AMPK-dependent phosphorylation of ULK1 induces autophagy[J]. Cell Metabolism, 2011, 13(2): 119-120.
[58] Jermendy G.PPARγ agonists: Antidiabetic drugs with a potential role in the treatment of diseases other than diabetes[J]. Diabetes Research and Clinical Practice, 2007, 78(3): 29-39.
[59] Latha R C R, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats[J]. Chemico-Biological Interactions, 2011, 189(1): 112-118.
[60] Goldstein B J.Insulin resistance as the core defect in type 2 diabetes mellitus[J]. American Journal of Cardiology, 2002, 90(5): 3-10.
[61] Makihara H, Koike Y, Ohta M, et al.Gallic acid, the active ingredient of terminalia bellirica, enhances adipocyte differentiation and adiponectin secretion[J]. Biological & Pharmaceutical Bulletin, 2016, 39(7): 1137-1143.
[62] Hardie D G.AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10): 774-785.
[63] Jager S, Handschin C, Stpierre J, et al.AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(29): 12017-12022.
[64] Lagouge M, Argmann C A, Gerharthines Z, et al.Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α[J]. Cell, 2006, 127(6): 1109-1122.
[65] Canto C, Auwerx J.PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure[J]. Current Opinion in Lipidology, 2009, 20(2): 98-105.
[66] Fulco M, Cen Y, Zhao P, et al.Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt[J]. Developmental Cell, 2008, 14(5): 661-673.
[67] Pfluger P T, Herranz D, Velascomiguel S, et al.Sirt1 protects against high-fat diet-induced metabolic damage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9793-9798.
[68] Michan S, Sinclair D C.Sirtuins in mammals: insights into their biological function[J]. Biochemical Journal, 2007, 404(1): 1-13.
[69] Kelly G.A Review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1[J]. Alternative Medicine Review: A Journal of Clinical Therapeutic, 2010, 15(3): 245-263.
[70] Ramadori G, Fujikawa T, Fukuda M, et al.SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity[J]. Cell Metabolism, 2010, 12(1): 78-87.
[71] Erion D M, Yonemitsu S, Nie Y, et al.SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11288-11293.
[72] Kim Y D, Park K G, Lee Y S, et al.Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP[J]. Diabetes, 2008, 57(2): 306-314.
[73] Fullerton M D, Galic S, Marcinko K, et al.Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin[J]. Nature Medicine, 2013, 19(12): 1649-1654.
[74] Kido Y, Nakae J, Accili D.The insulin receptor and its cellular targets[J]. The Journal of Clinical Endocrinology and Metabolism, 2001, 86(3): 972-979.
[75] White M F.Insulin signaling in health and disease[J]. Science, 2003, 302(5651): 1710-1711.
[76] Lietzke S E, Bose S, Cronin T C, et al.Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains[J]. Molecular Cell, 2000, 6(2): 385-394.
[77] Kim Y B, Peroni O D, Franke T F, et al.Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats[J]. Diabetes, 2000, 49(5): 847-856.
[78] Cho H, Mu J, Kim J K, et al.Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ)[J]. Science, 2001, 292(5522): 1728-1731.
[79] Katome T, Obata T, Matsushima R, et al.Use of RNA Interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/Protein kinase B isoforms in insulin actions[J]. Journal of Biological Chemistry, 2003, 278(30): 28312-28323.
[80] Tzatsos A, Kandror K V.Nutrients suppress phosphatidylinositol 3-Kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation[J]. Molecular and Cellular Biology, 2006, 26(1): 63-76.
[81] Ma X, Tsuda S, Yang X, et al.Pu-erh tea hot-water extract activates Akt and induces insulin-independent glucose transport in rat skeletal muscle[J]. Journal of Medicinal Food, 2013, 16(3): 259-262.
[82] Tzeng T, Liou S, Liu I.Myricetin ameliorates defective post-receptor insulin signaling via β-endorphin signaling in the skeletal muscles of fructose-fed rats[J]. Evidence-based Complementary and Alternative Medicine, 2011: 150752. doi: 10.1093/ecam/neq017.
[83] Soccio R E, Chen E R, Lazar M A.Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes[J]. Cell Metabolism, 2014, 20(4): 573-591.
[84] Plutzky J.PPARs as Therapeutic targets: reverse cardiology?[J]. Science, 2003, 302(5644): 406-407.
[85] Sharma B R, Kim H J, Rhyu D Y.Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes[J]. Journal of Translational Medicine, 2015, 13(1): 62. doi: 10.1186/s12967-015-0412-5.