[1] Breda J, Jewell J, Keller A.The importance of the World Health Organization sugar guidelines for dental health and obesity prevention[J]. Caries Research, 2019, 53: 149-152.
[2] Silvia B S, Ana O R, Mirjam M H, et al.Clustering of multiple energy balance-related behaviors in school children and its association with overweight and obesity: WHO European Childhood Obesity Surveillance Initiative (COSI 2015-2017)[J]. Nutrients, 2019, 11(3): 511. doi: 10.3390/nu11030511.
[3] Ezzati M, Bentham J, Di C M, et al.Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults[J]. Lancet, 2017, 390(10113): 2627-2642.
[4] 马冠生. 中国儿童肥胖报告[R]. 北京: 人民卫生出版社, 2017.
Ma G S.Report on childhood obesity in china [R]. Beijing: People's Medical Publishing House, 2017.
[5] Guida S, Venema K.Gut microbiota and obesity: involvement of the adipose tissue[J]. Journal of Functional Foods, 2015, 14: 407-423.
[6] Guh D P, Zhang W, Bansback N, et al.The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis[J]. BMC Public Health, 2009, 9: 88. doi: 10.1186/1471-2458-9-88.
[7] Piche M E, Poirier P, Lemieux I, et al.Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update[J]. Progress Cardiovasc Diseases, 2018, 61(2): 103-113.
[8] Lee E Y, Yook K H.Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front Med, 2018, 12(6): 658-666.
[9] Chen G, Chen R, Chen D, et al.Tea polysaccharides as potential therapeutic options for metabolic diseases[J]. Journal of Agricultural and Food Chemistry, 2018, 67(19): 5350-5360.
[10] Guirro M, Herrero P, Costa A, et al.Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity[J]. Journal of Proteomics, 2019, 209: 103489. doi: 10.1016/j.jprot.2019.103489.
[11] Song D, Cheng L, Zhang X, et al.The modulatory effect and the mechanism of flavonoids on obesity[J]. Journal of Food Biochemistry, 2019, 43(8): e12954. doi: 10.1111/jfbc.12954.
[12] 李海珊, 刘丽乔, 聂少平. 茶多糖对小鼠肠道健康及免疫调节功能的影响[J]. 食品科学, 2017, 38(7): 187-192.
Li H S, Liu L Q, Nie S P.Effects of green tea polysaccharides on intestinal health and immune regulation in mice[J]. Food Science, 2017, 38(7): 187-192.
[13] Yang C S, Zhang J, Zhang L, et al.Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Molecular Nutrition & Food Research, 2016, 60(1): 160-174.
[14] Wu T, Guo Y, Liu R, et al.Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats[J]. Food Function, 2016, 7(5): 2469-2478.
[15] Nakamura M, Miura S, Takagaki A, et al.Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide[J]. International Journal Food Science Nutrients, 2017, 68(3): 321-330.
[16] Li S, Chen H, Wang J, et al.Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice[J]. International Journal Biological Macromolecules, 2015, 81: 967-974.
[17] Chen H, Wang Z, Qu Z, et al.Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea[J]. European Food Research and Technology, 2009, 229(4): 629-635.
[18] 艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019.
Ai Y J.Study on the structure-activity relationship of antioxidant polysaccharides [D]. Wuhan: Huazhong Agricultural University, 2019.
[19] 邵淑宏. 乌龙茶多糖理化性质及抗氣化、降血糖活性研究[D]. 杭州: 浙江大学, 2015.
Shao S H.Study on physical and chemical properties of dragon tea polysaccharide and its anti-gasification and hypoglycemic activity [D]. Hangzhou: Zhejiang University, 2015.
[20] Chen H, Zhang M, Qu Z, et al.Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis)[J]. Food Chemistry, 2008, 106(2): 559-563.
[21] 李娟, 刘锐, 吴涛, 等. 不同茶多糖对3T3-L1前脂肪细胞分化的抑制作用比较[J]. 食品科学, 2017, 38(21): 187-193.
Li J, Liu R, Wu T, et al.Comparison of the inhibitory effects of different tea polysaccharides on the differentiation of 3T3-L1 preadipocytes[J]. Food Science, 2017, 38(21): 187-193.
[22] 刘海燕, 任发政, 李景明, 等. 几种植物多糖的结构特征与预防肥胖活性研究[J]. 中国食物与营养, 2019, 25(12): 44-51.
Liu H Y, Ren F Z, Li J M, et al.Structural characteristics and anti-obesity efficacy of several plant polysaccharides[J]. Food and Nutrition in China, 2019, 25(12): 44-51.
[23] Chen G, Wang M, Xie M, et al.Evaluation of chemical property, cytotoxicity and antioxidant activity in vitro and in vivo of polysaccharides from Fuzhuan brick teas[J]. International Journal Biological Macromolecules, 2018, 116: 120-127.
[24] Chen H X, Zhang M, Qu Z S.Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 2256-2260.
[25] 韦铮, 贺燕, 郝麒麟, 等. 茶多糖在模拟胃肠消化体系的抗氧化作用研究[J]. 食品与发酵工业, 2020, 46(10): 109-117.
Wei Z, He Y, Hao Q L, et al.Study on the antioxidant effect of tea polysaccharides under the conditions of simulating gastrointestinal digestion in vitro[J]. Food and Fermentation Industries, 2020, 46(10): 109-117.
[26] Chen G J, Xie M H, Wan P, et al.Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea[J]. Food Chemistry, 2018, 244: 331-339.
[27] Li W W, Wang C, Yuan G Q, et al.Physicochemical characterisation and α-amylase inhibitory activity of tea polysaccharides under simulated salivary, gastric and intestinal conditions[J]. International Journal of Food Science & Technology, 2018, 53(2): 423-429.
[28] Fernández J, Redondo-B S, Gutiérrez-del R I, et al. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review[J]. Journal of Functional Foods, 2016, 25: 511-522.
[29] 张高帆, 陈萍, 徐思绮, 等. 茶多糖对四氧嘧啶模型小鼠的降糖作用及其体内分布规律研究[J]. 营养学报, 2015, 37(4): 384-388.
Zhang G F, Chen P, Xu S Q, et al.Hypoglycemic effect of tea polysaccharide on alloxan model mice and its in vivo research on distribution law[J]. Journal of Nutrition, 2015, 37(4): 384-388.
[30] Sánchez J, Priego T, Palou M, et al.Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life[J]. Endocrinology, 2008, 149(2): 733-740.
[31] 杨志秋, 詹莉莉, 傅正伟. 脂肪酶抑制剂应用于抗肥胖的研究进展[J]. 现代生物医学进展, 2011, 11(21): 4178-4181.
Yang Z Q, Zhan L L, Fu Z W.Recent advances of lipase inhibitor in the application of anti-obesity[J]. Progress in Modern Biomedicine, 2011, 11(21): 4178-4181.
[32] 李祥龙, 李晓梅, 杨煦, 等. 黑茶茶褐素与茶多糖对脂肪酶的抑制作用[J]. 食品与机械, 2018, 34(3): 27-31, 58.
Li X L, Li X M, Yang X, et al.Study of inhibition of black tea theabrownin and tea polysaccharides on lipase[J]. Food and Machinery, 2018, 34(3): 27-31, 58.
[33] 舒婷, 肖畅, 何慧, 等. 青砖茶粗多糖抑制α-葡萄糖苷酶活性的研究[J]. 食品科技, 2019, 44(3): 194-199.
Shu T, Xiao C, He H, et al.Inhibitory effects of crude polysaccharide of green brick tea on α-glucosidase activity[J]. Food Science and Technology, 2019, 44(3): 194-199.
[34] 和兴萍, 罗燕, 李雪, 等. 几种降脂减肥实验动物模型的建立与比较[J]. 中华中医药学刊, 2017, 35: 1747-1751.
He X P, Luo Y, Li X, et al.Comparison of several kinds of lipid-Lowering diet experimental animal model[J]. Chinese Journal of Traditional Chinese Medicine, 2017, 35: 1747-1751.
[35] 陈粉粉, 郭爱伟, 周杰珑, 等. ICR小鼠肥胖模型的建立以及肥胖指标和脂肪组织形态学比较[J]. 安徽农业科学, 2012, 40(5): 2720-2073.
Chen F F, Guo A W, Zhou J L, et al.Establishment of the obesity model of ICR mice and the comparison of the obesity index and morphology of adipose tissue[J]. Journal of Anhui Agri, 2012, 40(5): 2720-2073.
[36] Ren D, Hu Y, Luo Y, et al.Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice[J]. Food Function, 2015, 6(10): 3342-3350.
[37] 李清亮. 黄大茶茶多糖对饲喂高脂日粮小鼠肠道菌群的调节作用[D]. 合肥: 安徽农业大学, 2018.
Li Q L.Polysacchardies in Large Yellow tea modulate gut microbiome in HFD fed mice [D]. Hefei: Anhui Agricultural University, 2018.
[38] Mao Y, Wei B, Teng J, et al.Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia[J]. International Journal of Food Science & Technology, 2018, 53(3): 599-607.
[39] 郭郁, 吴涛, 刘锐, 等. 红茶提取物减肥作用研究[J]. 现代食品科技, 2017, 33(2): 16-21.
Guo Y, Wu T, Liu R, et al.Study on the weight-loss effect of black tea extracts[J]. Modern Food Science and Technology, 2017, 33(2): 16-21.
[40] 吴文华. 洱茶调节血脂功能评价及其生化机理的研究[D] . 重庆: 西南农业大学, 2003.
Wu W H.Functional appraisal of blood lipid adjusted by Puer tea and study on its physiochemical mechanism [D]. Chongqing: Southwest Agricultural University, 2003.
[41] Olsen M K, Johannessen H, Cassie N, et al.Steady-state energy balance in animal models of obesity and weight loss[J]. Scandinavian Journal Gastroenterology, 2017, 52(4): 442-449.
[42] Ahima R S, Antwi D A.Brain regulation of appetite and satiety[J]. Endocrinology and Metabolism Clinics of North America, 2008, 37(4): 811-823.
[43] Xu Y, Zhang M, Wu T, et al.The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet[J]. Food Function, 2015, 6(1): 297-304.
[44] Maniadakis N, Kapaki V, Damianidi L, et al.A systematic review of the effectiveness of taxes on nonalcoholic beverages and high-in-fat foods as a means to prevent obesity trends[J]. ClinicoEconomics and Outcomes Research, 2013, 5: 519-543.
[45] Huang J, Wang Y, Xie Z, et al.The anti-obesity effects of green tea in human intervention and basic molecular studies[J]. European Journal Clinical Nutrition, 2014, 68(10): 1075-1087.
[46] Chung J O, Yoo S H, Lee Y E, et al.Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch[J]. Food & Function, 2019, 10(2): 746-753.
[47] Saely C H, Geiger K, Drexel H.Brown versus white adipose tissue: a mini-review[J]. Gerontology, 2012, 58(1): 15-23.
[48] Frühbeck G, Becerril S, Sáinz N, et al.BAT: A new target for human obesity?[J]. Trends in Pharmacological Sciences, 2009, 30(8): 387-396.
[49] Ferranti S, Mozaffarian D.The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences[J]. Clinical Chemistry, 2008, 54(6): 945-955.
[50] Hammad S S, Eck P, Sihag J, et al.Common variants in lipid metabolism-related genes associate with fat mass changes in response to dietary monounsaturated fatty acids in adults with abdominal obesity[J]. The Journal of Nutrition, 2019, 149(10): 1749-1756.
[51] Bazhan N M, Baklanov A V, Piskunova J V, et al.Expression of genes involved in carbohydrate-lipid metabolism in muscle and fat tissues in the initial stage of adult-age obesity in fed and fasted mice[J]. Physiological Reports, 2017, 5(19): e13445. doi: 10.14814/phy2.13445.
[52] Catalán V, Rodríguez A, Ramírez B, et al.Association of increased Visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity[J]. Nutrition Metabolism & Cardiovascular Diseases, 2017, 21(4): 245-253.
[53] Chen G J, Xie M H, Wan P, et al.Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2783-2795.
[54] Manna P, Jain S K.Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies[J]. Metabolic Syndrome And Related Disorders, 2015, 13(10): 423-444.
[55] Fernandez S A, Madrigal S E, Bautista M, et al.Inflammation, oxidative stress, and obesity[J]. International Journal of Molecular Sciences, 2011, 12(5): 3117-3132.
[56] Savini I, Catani M V, Evangelista D, et al.Obesity-associated oxidative stress: strategies finalized to improve redox state[J]. International Journal of Molecular Sciences, 2013, 14(5): 10497-10538.
[57] Wang J, Liu W, Chen Z, et al.Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma[J]. Biomed Pharmacother, 2017, 90: 160-170.
[58] Wang Y, Zhao Y, Andrae M K, et al.Tea polysaccharides as food antioxidants: an old woman's tale?[J]. Food Chemistry, 2013, 138(2/3): 1923-1927.
[59] Zhang L, Gui S, Liang Z, et al.Musca domestica cecropin (Mdc) alleviates Salmonella typhimurium-induced colonic mucosal barrier impairment: associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora[J]. Frontiers in Microbiology, 2019, 10: 522. doi: 10.3389/fmicb.2019.00522.
[60] Musso G, Gambino R, Cassader M.Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J]. The Annual Review of Medicine, 2011, 62: 361-380.
[61] Huang F, Zheng X, Ma X, et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications, 2019, 10(1): 4971. doi: 10.1038/s41467-019-12896-x.
[62] Rothschild D, Weissbrod O, Barkan E, et al.Environment dominates over host genetics in shaping human gutmicrobiota[J]. Nature, 2018, 555: 210-215.
[63] Rosenbaum M, Knight R, Leibel R L.The gut microbiota in human energy homeostasis and obesity[J]. Trends Endocrinol Metab, 2015, 26(9): 493-501.
[64] Bernardi S, Del Bo C, Marino M, et al.Polyphenols and intestinal permeability: rationale and future perspectives[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1816-1829.
[65] Dugas L R, Lie L, Plange-Rhule J, et al.Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol[J]. BMC Public Health, 2018, 18(1): 978. doi: 10.1186/s12889-018-5879-6.
[66] Tremaroli V, Backhed F.Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249.
[67] Petriz B A, Castro A P, Almeida J A, et al.Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats[J]. BMC Genomics, 2014, 15: 511. doi: 10.1186/1471-2164-15-511.
[68] Queipo M I, Seoane L M, Murri M, et al.Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels[J]. Plos One, 2013, 8(5): e65465. doi: 10.1371/journal.pone.0065465.
[69] Wahlström A, Sayin S I, Marschall H U, et al.Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism, 2016, 24(1): 41-50.
[70] Chen H, Qu, Z, Fu L L, et al. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea[J]. Journal of Food Science, 2009, 74(6): 469474. doi: 10.1111/j.1750-3841.2009.01231.x.
[71] Chen H X, Zhang M, Qu Z S, et al.Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis)[J]. Food Chemistry, 2008, 106: 559-563.
[72] Du L L, Fu Q Y, Xiang L P, et al.Tea polysaccharides and their bioactivities[J]. Molecules, 2016, 21(11): 1449. doi: 10.3390/molecules21111449.
[73] Wang Y F, Liu Y Y, Huo J L, et al.Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides[J]. International Journal Biological Macromolecules, 2013, 62: 714-719.
[74] Zhang X, Chen H X, Zhang N, et al.Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea[J]. Food Research International, 2013, 53: 726-731.
[75] Chen G, Yuan Q, Saeeduddin M, et al.Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153: 663-678.