Welcome to Journal of Tea Science,Today is
Research Paper

Analysis of Ground-based Spectral Reflection Characteristics and Differences of Three Types of Yunnan Puer Tea

  • LYU Haitao ,
  • WU Wenjun ,
  • LIAO Shengxi ,
  • WANG Zizhi ,
  • ZHOU Junhong ,
  • LI Li ,
  • CUI Kai
Expand
  • 1. Research Institute of Resources Insects, China Academy of Forestry, Kunming 650224, China;
    2. Nanjing Forestry University, Nanjing 210037, China

Received date: 2020-03-02

  Revised date: 2020-04-03

  Online published: 2021-04-13

Abstract

The type and producing area of tea plants affect the quality of Puer tea, and there are characteristic differences in canopy spectrum of tea plants of different types and producing area. It is great significance to make clear the source of fresh leaves and guarantee the quality of Puer tea by using this characteristic difference. In this study, the ancient tree tea, large tree tea and platform tea from four typical Puer tea mountains of Jingdong, Jinggu, Lancang and Ning'er in Yunnan Province were collected to measure spectral reflectance of their canopy leaves. The characteristics and differences of spectral reflectance were also analyzed and finally the ground-based spectral reflectance of Puer tea trees in Yunnan was revealed. The results showed that: (1) there were differences in spectral reflectance of canopy leaves of different Puer teas. In the near-infrared band, the differences in spectral reflectance of ancient tree tea and platform tea were significant. The spectral reflectance of ancient tree tea was similar to that of large tree tea. Meanwhile, the average reflectance of ancient tree tea was higher than that of large tree tea. (2) The spectral reflectance of different types of canopy leaves was shown as ancient tree tea>large tree tea>platform tea in the near infrared band. The spectral reflectance of canopy leaves of the same type of tea was Lancang>Jingdong>Jinggu, which has a positive correlation with the annual average temperature of the three places and a negative correlation with altitude. (3) Wavelength 754 nm, 801 nm and 891 nm were selected as the best wavelength points to distinguish three types of Puer tea, and 801 nm could be used as a characteristic wavelength point to distinguish ancient tree tea from different regions. This study provided technical support for the source of fresh leaves of Puer tea and the identification of tea species.

Cite this article

LYU Haitao , WU Wenjun , LIAO Shengxi , WANG Zizhi , ZHOU Junhong , LI Li , CUI Kai . Analysis of Ground-based Spectral Reflection Characteristics and Differences of Three Types of Yunnan Puer Tea[J]. Journal of Tea Science, 2021 , 41(2) : 184 -192 . DOI: 10.13305/j.cnki.jts.2021.02.004

References

[1] 唐一春, 杨盛美, 季鹏章, 等. 云南野生茶树资源的多样性、利用价值及其保护研究[J]. 西南农业学报, 2009, 22(2): 518-521.
Tang Y C, Yang S M, Ji P Z, et al.Study on the diversity, utilization and protection of wild tea germplasm in Yunnan[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(2): 518-521.
[2] 李晓丽, 何勇, 裘正军. 一种基于可见-近红外光谱快速鉴别茶叶品种的新方法[J]. 光谱学与光谱分析, 2007, 27(2): 279-282.
Li X L, He Y, Qiu Z J.Application PCA-ANN method to fast discrimination of tea varieties using visible/near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2007, 27(2): 279-282.
[3] 李敏. 乐山茶叶的近红外光谱分类识别[J]. 红外, 2015, 36(5): 43-46, 48.
Li M.Classification and identification of Leshan tea using near infrared spectroscopy[J]. Infrared, 2015, 36(5): 43-46, 48.
[4] Ning J, Sun J, Li S, et al.Classification of five Chinese tea categories with different fermentation degrees using visible and near infrared hyperspectral imaging[J]. International Journal of Food Properties, 2017, 20(s2): 1515-1522.
[5] Tu Y, Bian M, Wan Y, et al.Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV[J]. Peer J, 2018, 6: e4858. doi: 10.7717/peerj.4858.
[6] 孙俊, 靳海涛, 武小红, 等. 基于低秩自动编码器及高光谱图像的茶叶品种鉴别[J]. 农业机械学报, 2018, 49(8): 316-323.
Sun J, Jin H T, Wu X H, et al.Tea variety identification based on low-rank stacked auto-encoder and hyperspectral image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 316-323.
[7] 冯呈艳, 余志, 陈玉琼, 等. 茶鲜叶反射光谱和色差特性及其应用初探[J]. 中国茶叶加工, 2019(2): 33-39.
Feng C Y, Yu Z, Chen Y Q, et al.Study on the reflectance spectrum and chromatic aberration property of fresh tea leaves and its application[J]. China Tea Processing, 2019(2): 33-39.
[8] 艾施荣, 吴瑞梅, 吴彦红, 等. 利用高光谱图像技术鉴别庐山云雾茶产地[J]. 江西农业大学学报, 2014, 36(2): 428-433.
Ai S R, Wu R M, Wu Y H, et al.Identification of geographical origins of Lushan mist tea by hyper-spectral imaging technology[J]. Acta Agriculturae Universitis Jiangxiensis, 2014, 36(2): 428-433.
[9] 刘玲. 普洱茶特征风味成分分析[D]. 重庆: 西南大学, 2010.
Liu L.The analysis on characteristic flavor components of Pu-erh tea [D]. Chongqing: Southwest University, 2010.
[10] 黄桂枢. “世界茶源”普洱市茶文化在“一带一路”战略中的价值和作用[J]. 农业考古, 2016, 144(2): 260-262.
Huang G S.The value and role of tea culture of "world tea sources" in Pu’er city in the "Belt and Road" strategy[J]. Agricultural archaeology, 2016, 144(2): 260-262.
[11] 徐光彩, 庞勇, 李增元, 等. 小兴安岭主要树种冠层光谱季相变化研究[J]. 光谱学与光谱分析, 2013, 33(12): 3303-3307.
Xu G C, Pang Y, Li Z Y, et al.The changes of forest canopy spectral reflectance with seasons in Xiaoxing’anling[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3303-3307.
[12] 吴伟斌, 李佳雨, 张震邦, 等. 基于高光谱图像的茶树LAI与氮含量反演[J]. 农业工程学报, 2018, 34(3): 195-201.
Wu W B, Li J Y, Zhang Z B, et al.Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image[J]. Chinese Society of Agricultural Engineering, 2018, 34(3): 195-201.
[13] 李翠玲, 姜凯, 冯青春, 等. 基于叶绿素荧光光谱和反射光谱的甜瓜种子品种鉴别[J]. 光谱学与光谱分析, 2018, 38(1): 151-156.
Li C L, Jiang K, Feng Q C, et al.Melon seeds variety identification based on chlorophyll fluorescence spectrum and reflectance spectrum[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 151-156.
[14] 陈佼, 张丽. 天山北坡草地盖度高光谱遥感估算[J]. 草业科学, 2017, 34(1): 30-39.
Chen J, Zhang L.Estimating grassland coverage based on hyperspectral remote sensing in the northern Tianshan Mountains[J]. Pratacultural Science, 2017, 34(1): 30-39.
[15] 孙红, 刘宁, 邢子正, 等. 马铃薯冠层光谱响应特征参数优化与生长期判别[J]. 光谱学与光谱分析, 2019, 39(6): 1870-1877.
Sun H, Liu N, Xing Z Z, et al.Parameter optimization of potato spectral response characteristics and growth stage ldentification[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1870-1877.
[16] 刘声传, 曹雨, 鄢东海, 等. 贵州野生茶树资源地理分布和形态特征与气候要素的关系[J]. 茶叶科学, 2013, 33(6): 517-525.
Liu S C, Cao Y, Yan D H, et al.Geographical distribution and morphology of wild tea germplasm resources in Guizhou and its relationship with climatic factors[J]. Journal of Tea Science, 2013, 33(6): 517-525.
[17] 马宏亮, 孙明国, 吴义恒, 等. 红外波段水汽连续吸收研究进展[J]. 大气与环境光学学报, 2018, 13(5): 26-38.
Ma H L, Sun M G, Wu Y H, et al.Research progress of water vapour continuum in infrared spectral regions[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 26-38.
[18] 陈辉煌, 彭松泰, 陈文惠, 等. 基于地面高光谱数据鲜茶叶特征选择与品种识别[J]. 福建师范大学学报(自然科学版), 2016, 32(6): 89-95, 102.
Chen H H, Peng S T, Chen W H, et al.Fresh tea discrimination using in situ hyperspectral data[J]. Journal of Fujian Normal University (Natural Science Edition), 2016, 32(6): 89-95, 102.
[19] 陈玲, 熊智, 孙浩, 等. 四种不同年份普洱茶中茶多酚与咖啡碱成分的分析[J]. 食品工业科技, 2011, 32(10): 132-134, 138.
Chen L, Xiong Z, Sun H, et al.Study on the relationship between the content of tea polyphenol and caffeine and the storage period of Pu’er teas[J]. Science and Technology of Food Industry, 2011, 32(10): 132-134, 138.
[20] 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439.
Yu S, He Z L, Chen G C, et al.Chemical characteristics of soil in the root layer of tea trees of different ages and their effects on microflora and quantity[J]. Acta Pedologica Sinica, 2003, 40(3): 433-439.
[21] 林郑和, 钟秋生, 陈常颂, 等. 不同茶树品种缺氮下叶片光合特性的变化分析[C]//中国科学技术协会. 第十五届中国科协年会第20分会场: 科技创新与茶产业发展论坛论文集. 北京: 中国科学技术协会学会学术部, 2013: 96-101.
Lin Z H, Zhong Q S, Chen C S, et al.Photosynthetic characteristic of different tea cultivars in response to nitrogen deficiency[C]//China Association for Science and Technology. The 20th session of the 15th annual meeting of China Association for Science and Technology: Proceedings of the Forum on Science and Technology Innovation and Tea Industry Development. Beijing: Academic department of China Association for Science and Technology, 2013: 96-101.
[22] 许丽颖, 刘斗南, 刘月. 不同茶树品种叶片的花青素研究进展[J]. 福建茶叶, 2019, 41(3): 4-5.
Xu L Y, Liu D N, Liu Y.Research progress on anthocyanins in leaves of different tea tree varieties[J]. Tea in Fujian, 2019, 41(3): 4-5.
[23] 梁守真, 施平, 马万栋, 等. 植被叶片光谱及红边特征与叶片生化组分关系的分析[J]. 中国生态农业学报, 2010, 18(4): 804-809.
Liang S Z, Shi P, Ma W D, et al.Relational analysis of spectra and red-edge characteristics of plant leaf and leaf biochemical constituent[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 804-809.
[24] 王胜鹏, 郑鹏程, 龚自明, 等. 基于近红外光谱技术的茶鲜叶海拔高度判别模型建立[J]. 华中农业大学学报, 2018, 37(1): 89-94.
Wang S P, Zheng P C, Gong Z M, et al.Establishment of altitude discrimination model of fresh tea leaves based on near infrared spectroscopy[J]. Journal of Huazhong Agricultural University, 2018, 37(1): 89-94.
Outlines

/