Welcome to Journal of Tea Science,Today is
Research Paper

The Effect of Red Light Withering on the Volatile Components of Tea Leaves and the Quality of Black Tea Product

  • LIN Jiazheng ,
  • TU Zheng ,
  • CHEN Lin ,
  • YE Yang ,
  • LIU Fei ,
  • WANG Yuwan ,
  • YANG Yunfei ,
  • WU Xun ,
  • LYU Haowei
Expand
  • 1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Tea Research Institute of Sichuan Academy of Agricultural Science, Chengdu 610066, China;
    3. Graduate School of Chinese Academy of Agriculture Sciences, Beijing 100081, China

Received date: 2021-03-15

  Revised date: 2021-03-31

  Online published: 2021-06-15

Abstract

Red light withering contributes to the formation of tea aroma. However, the effect of different red light quality on the volatile components of withered tea and the quality of the black tea product after processing remains to be studied. In this study, headspace solid phase micro extraction-gas chromatography-mass spectrometry was used to detect and analyze the volatile components of withered leaves under different light treatments such as dark, red light (630 nm, 1 000 lx, 3 000 lx), natural light (260-325 lx), and the dynamic changes of the volatile components of withered leaves and red light withered differential volatile substances under different light treatments were studied. The results show that a total of 130 volatile components were detected in withered leaves at different time periods, including 26 alcohols, 33 esters, 29 hydrocarbons, 12 aldehydes, 13 ketones, and 17 others. Comparing different light withering methods, it was found that the total content of volatile components in the red light 3 000 lx group pre-mid withering period (The first 8 h) were significantly higher than that in other groups. With the increase of red light intensity, the total content of esters increased significantly (P<0.05), while the total content of ketones decreased significantly (P<0.05). Through orthogonal partial least squares discriminant analysis, the variable projection importance factor was greater than 1 and the coefficient of variation was greater than 50%, 5 volatile components were screened out with the greater response to red light, including 1,2-dimethylpropyl-2-methyl-butanoic acid ester, 1-isocyano-3-methyl-benzene, decanal, 2-methyl-2-decanol, linoleic acid ethyl ester. Among them, the coefficient of variation of decanal was as high as 133.34% under red light 1 000 lx. The results of this study could provide a scientific basis for the improvement of black tea aroma quality and targeted regulation.

Cite this article

LIN Jiazheng , TU Zheng , CHEN Lin , YE Yang , LIU Fei , WANG Yuwan , YANG Yunfei , WU Xun , LYU Haowei . The Effect of Red Light Withering on the Volatile Components of Tea Leaves and the Quality of Black Tea Product[J]. Journal of Tea Science, 2021 , 41(3) : 393 -405 . DOI: 10.13305/j.cnki.jts.2021.03.006

References

[1] 朱荫, 邵晨阳, 张悦, 等. 不同茶树品种龙井茶香气成分差异分析[J]. 食品工业科技, 2018, 39(23): 241-246.
Zhu Y, Shao C Y, Zhang Y, et al.Comparison of differences in aroma constituents of Longjing tea produced from different tea germplasms[J]. Science and Technology of Food Industry. 2018, 39(23): 241-246.
[2] 董尚胜, 骆耀平, 吴俊杰, 等. 遮荫、有机肥对夏茶叶片内醇系香气生成的影响[J]. 茶叶科学, 2000, 20(2): 133-136.
Dong S S, Luo Y P, Wu J J, et al.Effect of shading and organic fertilizer on the alcoholic aroma production in summer tea leaves[J]. Journal of Tea Science, 2000, 20(2): 133-136.
[3] Yang Z Y, Kobayashi E, Katsuno T, et al.Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark[J]. Food Chemistry, 2012, 135(4): 2268-2276.
[4] 陈保, 姜东华, 罗发美, 等. 四种不同加工工艺紫娟茶香气成分的比较[J]. 现代食品科技, 2013, 29(10): 2480-2486.
Chen B, Jiang D H, Luo F M, et al.Aroma components of Zijuan tea processed by four different methods[J]. Modern Food Science and Technology, 2013, 29(10): 2480-2486.
[5] Franklin K A, Whitelam G C.Phytochromes and shade-avoidance responses in plants[J]. Annals of Botany, 2005, 96(2): 169-175.
[6] 陈寿松, 金心怡, 游芳宁, 等. 多次间歇LED光照射对铁观音风味组分的影响[J]. 农业工程学报, 2018, 34(2): 308-314.
Chen S S, Jin X Y, You F N, et al.Influence of multi intermittence radiation by LED on flavor components in Tieguanyin tea[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 308-314.
[7] Hou Z W, Wang Y J, Xu S S, et al.Effects of dynamic and static withering technology on volatile and nonvolatile components of Keemun black tea using GC-MS and HPLC combined with chemometrics[J]. LWT, 2020, 130: 109547. doi: 10.1016/j.lwt.2020.109547.
[8] Tomlins K I, Mashingaidze A.Influence of withering, including leaf handling, on the manufacturing and quality of black teas: a review[J]. Food Chemistry, 1997, 60(4): 573-580.
[9] Wu Z J, Ma H Y, Zhuang J. iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis)[J]. Molecular Genetics and Genomics, 2018, 293(1): 45-59.
[10] Wang Y, Zheng P C, Liu P P, et al.Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food Chemistry, 2019, 272: 313-322.
[11] Chen S, Liu H H, Zhao X M, et al.Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture[J]. Food Research International, 2020, 128: 108778. doi: 10.1016/j.foodres.2019.108778.
[12] Zhu C, Zhang S T, Fu H F, et al.Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering[J]. Frontiers in Plant Science, 2019, 10: 1638. doi: 10.3389/fpls.2019.01638.
[13] 李小娟, 郑国建, 陈积霞, 等. 不同光源照射与碰青处理对摊青叶香气的影响[J]. 中国茶叶加工, 2011(2): 13-18.
Li X J, Zheng G J, Chen J X, et al.Effect of different light resources the aroma components of fresh and Peng-qing treatment on tea leaves after spreading[J]. China Tea Processing, 2011(2): 13-18.
[14] 项丽慧, 林馥茗, 孙威江, 等. LED黄光对工夫红茶萎凋过程香气相关酶基因表达及活性影响[J]. 茶叶科学, 2015, 35(6): 559-566.
Xiang L H, Lin F M, Sun W J, et al.Effects of LED yellow light on the expression levels of aroma related genes and the enzyme activity in withering process of Congou black tea[J]. Journal of Tea Science, 2015, 35(6): 559-566.
[15] 陈寿松. LED对乌龙茶萎凋光响应及其理化品质的影响研究[D]. 福州: 福建农林大学, 2014.
Chen S S.Study on light response and physiological and biochemical quality by LED to Oolong tea withering [D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[16] Ai Z Y, Zhang B B, Chen Y Q, et al.Impact of light irradiation on black tea quality during withering[J]. Journal of Food Science and Technology, 2017, 54(5): 1212-1227.
[17] Fu X M, Chen Y Y, Mei X, et al.Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength[J]. Scientific Reports, 2015, 5: 16858. doi: 10.1038/srep16858.
[18] 孟慧, 王登良, 罗晶晶, 等. 不同光质萎凋对金观音红茶香气组分的影响[J]. 食品安全质量检测学报, 2019, 10(13): 4234-4241.
Meng H, Wang D L, Luo J J, et al.Effects of different light-wave withering on the aromatic components of Jinguanyin black tea[J]. Journal of Food Safety & Quality, 2019, 10(13): 4234-4241.
[19] 黄藩. 工夫红茶光补偿萎凋技术工艺研究[D]. 北京: 中国农业科学院, 2015.
Huang F.Study on the light compensation technology of Congou black tea in withering process [D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[20] 何华锋, 金雨青, 褚飞洋, 等. 基于单因素和响应面优化的工夫红茶单色光补偿萎凋品质分析[J]. 科学技术与工程. 2018, 18(22): 112-120.
He H F, Jin Y Q, Chu F Y, et al.Quality analysis of congou black tea with monochromatic light compensatory withering based on single factor and response surface optimization[J]. Science Technology and Engineering, 2018, 18(22): 112-120.
[21] 张铭铭, 江用文, 滑金杰, 等. 干燥方式对绿茶栗香的影响[J]. 食品科学, 2020, 41(15): 115-123.
Zhang M M, Jiang Y W, Hua J J, et al.Effect of drying methods on chestnut-like aroma of green tea[J]. Food Science, 2020, 41(15): 115-123.
[22] Wang H J, Hua J J, Jiang Y W, et al.Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances[J]. Food Research International, 2020, 136: 109479. doi: 10.1016/j.foodres. 2020.109479.
[23] 林杰, 陈莹, 施元旭, 等. 保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立[J]. 茶叶科学, 2014, 34(3): 261-270.
Lin J, Chen Y, Shi Y X, et al.Application of retention index on volatile compound identification of tea and development of retention index database[J]. Journal of Tea Science, 2014, 34(3): 261-270.
[24] Ho C T, Zheng X, Li S M.Tea aroma formation[J]. Food Science and Human Wellness, 2015, 4(1): 9-27.
[25] 王秋霜, 凌彩金, 乔小燕, 等. 萎凋及发酵时间对广东丹霞红茶香气及品质的影响[J]. 茶叶科学, 2019, 39(3): 342-354.
Wang Q S, Ling C J, Qiao X Y, et al.Effect of withering and fermentation duration on aroma and qualities in Guangdong Danxia black tea[J]. Journal of Tea Science, 2019, 39(3): 342-354.
[26] 陈维, 马成英, 王雯雯, 等. 萎凋时间对“英红九号”白茶香气的影响[J]. 食品科学, 2017, 38(18): 138-143.
Chen W, Ma C Y, Wang W W, et al.Effects of withering duration on the aroma profile of Yinghong No. 9 white tea[J]. Food Science, 2017, 38(18): 138-143.
[27] Ravichandran R, Parthiban R.Lipid occurrence, distribution and degradation to flavour volatiles during tea processing[J]. Food Chemistry, 2000, 68(1): 7-13.
[28] Mosblech A, Feussner I, Heilmann I.Oxylipins: structurally diverse metabolites from fatty acid oxidation[J]. Plant Physiology and Biochemistry, 2009, 47(6): 511-517.
[29] 朱荫, 杨停, 施江, 等. 西湖龙井茶香气成分的全二维气相色谱-飞行时间质谱分析[J]. 中国农业科学, 2015, 48(20): 4120-4146.
Zhu Y, Yang T, Shi J, et al.Analysis of aroma components in Xihu Longjing tea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Scientia Agricultura Sinica, 2015, 48(20): 4120-4146.
[30] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学, 2019, 40(23): 341-349.
Wang M Q, Zhu Y, Zhang Y, et al.A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341-349.
[31] Zhu Y, Lv H P, Shao C Y, et al.Identification of key odorants responsible for chestnut-like aroma quality of green teas[J]. Food Research International, 2018, 108: 74-82.
[32] Hattori S, Takagaki H, Fujimori T.Identification of volatile compounds which enhanced odor notes in Japanese green tea using the OASIS (original aroma simultaneously input to the sniffing port) method[J]. Food Science and Technology Research, 2005, 11(2): 171-174.
[33] Zhao X P.Identification of aroma active compounds in fenghuangdancong tea stalk by solvent assisted flavour evaporation combined gas chromatography-mass spectrometry/gas chromatography-olfactometry[J]. Hans Journal of Agricultural Sciences, 2017, 7(9): 636-647.
[34] 石渝凤, 邸太妹, 杨绍兰, 等. 花香型红茶加工过程中香气成分变化分析[J]. 食品科学, 2018, 39(8): 167-175.
Shi Y F, Di T M, Yang S L, et al.Changes in aroma components in the processing of flowery black tea[J]. Food Science, 2018, 39(8): 167-175.
[35] 郑鹏程, 刘盼盼, 龚自明, 等. 湖北红茶特征性香气成分分析[J]. 茶叶科学, 2017, 37(5): 465-475.
Zheng P C, Liu P P, Gong Z M, et al.Analysis of characteristic aroma components of Hubei black tea[J]. Journal of Tea Science, 2017, 37(5): 465-475.
Outlines

/