Welcome to Journal of Tea Science,Today is
Review

Camellia Ptilophylla and Specific Chemical Components, Theirs Health Beneficial Effects

  • WU Wenliang ,
  • TONG Tong ,
  • HU Yao ,
  • ZHOU Hao ,
  • YIN Xia ,
  • ZHANG Shuguang
Expand
  • 1. Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
    2. Nuclear Agronomy and Aerospace Breeding Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China

Received date: 2021-07-30

  Revised date: 2021-08-23

  Online published: 2021-10-12

Abstract

Cocoa tea (Camellia ptilophylla Chang) is a specific tea resource in China, and theobromine (TB) and gallocatechin gallate (GCG), as the dominant chemical components of cocoa tea, have various health effects. This paper summarized intervention effects and mechanisms of cocoa tea, TB and GCG on cardiovascular diseases, cancers, obesity, diabetes, neurodegenerative diseases, dental diseases, respiratory diseases and kidney diseases, etc. This review would provide a theoretical reference for the development of functional cocoa tea products.

Cite this article

WU Wenliang , TONG Tong , HU Yao , ZHOU Hao , YIN Xia , ZHANG Shuguang . Camellia Ptilophylla and Specific Chemical Components, Theirs Health Beneficial Effects[J]. Journal of Tea Science, 2021 , 41(5) : 593 -607 . DOI: 10.13305/j.cnki.jts.20210917.002

References

[1] 叶创兴, 郑新强, 袁长春, 等. 无咖啡因茶树新资源可可茶研究综述[J]. 广东农业科学, 2001(2): 12-15.
Ye C X, Zheng X Q, Yuan C C, et al.Research on cocoa tea, a new source of decaffeinated tea tree[J]. Journal of Guangdong Agriculture Science, 2001(2): 12-15.
[2] 张娅楠, 陶琳琳, 高路, 等. 可可茶化学成分及药理功能的研究进展[J]. 食品科技, 2020, 45(7): 102-107.
Zhang Y N, Tao L L, Gao L, et al.Research advance on Camellia Ptilophylla[J]. Food Science and Technology, 2020, 45(7): 102-107.
[3] 何玉媚, 彭力, 李成仁, 等. 可可茶无性系品种的生化成分研究[J]. 广东农业科学, 2011, 38(6): 10-13.
He Y M, Peng L, Li C R, et al.Research on the biochemical ingredients of cultivated varieties of cocoa tea[J]. Journal of Guangdong Agriculture Science, 2011, 38(6): 10-13.
[4] Peng L, Khan N, Afaq F, et al.In vitro and in vivo effects of water extract of white cocoa tea (Camellia ptilophylla) against human prostate cancer[J]. Pharmaceutical Research, 2010, 27(6): 1128-1137.
[5] Yang X, Wang Y, La K, et al.Inhibitory effects of cocoa tea (Camellia ptilophylla) in human hepatocellular carcinoma HepG2 in vitro and in vivo through apoptosis[J]. The Journal of Nutritional Biochemistry, 2012, 23(9): 1051-1057.
[6] Gao X, Li X, Ho C, et al.Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway[J]. Food Research International, 2020, 129: 108854. doi: 10.1016/j.foodres.2019.108854.
[7] Xie B F, Liu Z C, Pan Q C, et al.The anticancer effect and anti-DNA topoisomerase II effect of extracts of Camellia ptilophylla chang and Camellia sinesis[J]. Chinese Journal of Cancer Research, 1994, 6(3): 184-190.
[8] Yang X R, Wat E, Wang Y P, et al.Effect of dietary cocoa tea (Camellia ptilophylla) supplementation on high-fat diet-induced obesity, hepatic steatosis, and hyperlipidemia in mice[J]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 783860. doi: 10.1155/2013/783576.
[9] Li K K, Liu C L, Shiu H T, et al.Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes[J]. Scientific Reports, 2016, 6(1): 20172. doi: 10.1038/srep20172.
[10] Kurihara H, Shibata H, Fukui Y, et al.Evaluation of the hypolipemic property of Camellia sinensis var. ptilophylla on postprandial hypertriglyceridemia[J]. Journal of Agricultural and Food Chemistry, 2006, 54(14): 4977-4981.
[11] Li J, Yuan Y Q, Wang R M, et al.Herbal antihyperlipidemic formulation of cocoa tea: preparation and in vivo comparison with atorvastatin[J]. Tropical Journal of Pharmaceutical Research, 2016, 15(12): 2543-2547.
[12] Li K K, Shi X G, Yang X R, et al.Antioxidative activities and the chemical constituents of two Chinese teas, Camellia kucha and C. ptilophylla[J]. International Journal of Food Science & Technology, 2012, 47(5): 1063-1071.
[13] 彭力. 可可茶驯化选育中特征生化成分和抗癌活性的研究[D]. 广州: 中山大学, 2010.
Peng L.Characterization of biochemical components and anticancer activity in the domestication and selection of cocoa tea [D]. Guangzhou: Sun Yat-sen University, 2010.
[14] Peng L, Wang X, Shi X, et al.Characterization of the constituents and antioxidative activity of cocoa tea (Camellia ptilophylla)[J]. Food Chemistry, 2011, 129(4): 1475-1482.
[15] 娄远蕾. 镧抑制脂多糖诱导小鼠巨噬细胞产生一氧化氮的机制[D]. 南昌: 南昌大学, 2007.
Lou Y L.Mechanisms of lanthanum inhibitting the production of nitric oxide in macrophages of mice induced by lipopolysaccharide [D]. Nanchang: Nanchang University, 2007.
[16] Lin X, Chen Z, Zhang Y, et al.Interactions among chemical components of cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species[J]. Food & Function, 2014, 5(6): 1175-1185.
[17] Gao X, Lin X, Li X, et al.Cellular antioxidant, methylglyoxal trapping, and anti-inflammatory activities of cocoa tea (Camellia ptilophylla Chang)[J]. Food & Function, 2017, 8(8): 2836-2846.
[18] Batterman R C, Grossman A J, Duninsky J, et al.Reevaluation of the usefulness of theobromine calcium gluconate for the management of congestive heart failure and anginal syndrome[J]. International Record of Medicine and General Practice Clinics, 1959, 172(6): 318-323.
[19] Boden W E.High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from framingham to the veterans affairs high-density lipoprotein intervention trial[J]. The American Journal of Cardiology, 2000, 86(12): 19-22.
[20] Assmann G, Gotto A M.HDL cholesterol and protective factors in atherosclerosis[J]. Circulation, 2004, 109(23): 8-14.
[21] Lee J, Shirk A, Oram J F, et al.Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway[J]. Biochemical Journal, 2002, 364(2): 475-484.
[22] Neufingerl N, Zebregs Y E, Schuring E A, et al.Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2013, 97(6): 1201-1209.
[23] Barcz E, Sommer E, Sokolnicka I, et al.The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells[J]. Oncology Reports, 1998, 5(2): 517-537.
[24] Skopińska-Rózewska E, Sommer E, Demkow U, et al.Screening of angiogenesis inhibitors by modified tumor-induced angiogenesis (TIA) test in lung cancer[J]. Roczniki Akademii Medycznej W Białymstoku, 1997, 42(1): 287-296.
[25] Gil M, Skopińska-Rózewska E, Radomska D, et al.Effect of purinergic receptor antagonists suramin and theobromine on tumor-induced angiogenesis in BALB/c mice[J]. Folia Biologica, 1993, 39(2): 63-68.
[26] Barcz E, Sommer E, Janik P, et al.Adenosine receptor antagonism causes inhibition of angiogenic activity of human ovarian cancer cells[J]. Oncology Reports, 2000, 7(6): 1285-1376.
[27] Sugimoto N, Miwa S, Hitomi Y, et al.Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B[J]. Nutrition and Cancer, 2014, 66(3): 419-423.
[28] Carla-Cadoná F, Kolinski-Machado A, Farina-Azzolin V, et al.Guaraná a caffeine-rich food increases oxaliplatin sensitivity of colorectal HT-29 cells by apoptosis pathway modulation[J]. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16(8): 1055-1065.
[29] Shojaei-Zarghani S, Rafraf M, Khosroushahi A Y, et al.Effectiveness of theobromine on inhibition of 1, 2-dimethylhydrazine-induced rat colon cancer by suppression of the Akt/GSK3β/β-catenin signaling pathway[J]. Journal of Functional Foods, 2020, 75: 104293. doi: 10.1016/j.jff.2020.104293.
[30] Shojaei-Zarghani S, Khosroushahi A Y, Rafraf M.Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111140. doi: 10.1016/j.biopha.2020.111140.
[31] Fuggetta M P, Zonfrillo M, Villivà C, et al.Inflammatory microenvironment and adipogenic differentiation in obesity: the inhibitory effect of theobromine in a model of human obesity in vitro[J]. Mediators of Inflammation, 2019, 2019: 1515621. doi: 10.1155/2019/1515621.
[32] Jang Y J, Koo H J, Sohn E, et al.Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways[J]. Food & Function, 2015, 6(7): 2365-2374.
[33] Mitani T, Watanabe S, Yoshioka Y, et al.Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1[J]. Biochimica Et Biophysica Acta, 2017, 1864(12): 2438-2448.
[34] Ikeda K, Yamada T.UCP1 dependent and independent thermogenesis in brown and beige adipocytes[J]. Frontiers in Endocrinology, 2020, 11: 498. doi: 10.3389/fendo.2020.00498.
[35] Jang M H, Kang N H, Mukherjee S, et al.Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes[J]. Biotechnology and Bioprocess Engineering, 2018, 23(6): 617-626.
[36] Jang M H, Mukherjee S, Choi M J, et al.Theobromine alleviates diet-induced obesity in mice via phosphodiesterase-4 inhibition[J]. European Journal of Nutrition, 2020, 59: 3503-3516.
[37] 程青格, 龚其海. 阿尔茨海默病的发病机制及治疗研究进展[J]. 遵义医学院学报, 2013, 36(6): 586-589.
Cheng Q G, Gong Q H.Research advances on the pathogenesis and treatment of Alzheimer's disease[J]. Acta Academiae Medicine Zunyi, 2013, 36(6): 586-589.
[38] Liu C, Kanekiyo T, Xu H, et al.Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy[J]. Nature Reviews Neurology, 2013, 9(2): 106-118.
[39] Holtzman D M, Herz J, Bu G.Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(3): a006312. doi: 10.1101/cshperspect.a006312.
[40] Mendiola-Precoma J, Padilla K, Rodríguez-Cruz A, et al.Theobromine-induced changes in A1 Purinergic receptor gene expression and distribution in a rat brain Alzheimer’s disease model[J]. Journal of Alzheimer's Disease, 2017, 55(3): 1273-1283.
[41] Chen D Y, Bambah-Mukku D, Pollonini G, et al.Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation[J]. Nature Neuroscience, 2012, 15(12): 1707-1714.
[42] Islam R, Matsuzaki K, Sumiyoshi E, et al.Theobromine improves working memory by activating the CaMKII/CREB/BDNF pathway in rats[J]. Nutrients, 2019, 11(4): 888. doi: 10.3390/nu11040888.
[43] Yoneda M, Sugimoto N, Katakura M, et al.Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice[J]. The Journal of Nutritional Biochemistry, 2017, 39: 110-116.
[44] 陈智, 张露. 基于龋风险评估的龋病治疗计划[J]. 中华口腔医学杂志, 2021, 56(1): 45-50.
Chen Z, Zhang L.Caries treatment planning based on caries risk assessment[J]. Chinese Journal of Stomatology, 2021, 56(1): 45-50.
[45] Strålfors A.Effect on hamster caries by purine derivatives vanillin and some tannin-containing materials caries in relation to food consumption and animal growth[J]. Archives of Oral Biology, 1967, 12(3): 321-332.
[46] Sadeghpour A.A neural network analysis of theobromine vs. fluoride on the enamel surface of human teeth: an experimental case study with strong implications for the production of a new line of revolutionary and natural non-fluoride based dentifrices[J]. Dissertation Abstracts International, 2007, 68(7): 150.
[47] Kargul B, Özcan M, Peker S, et al.Evaluation of human enamel surfaces treated with theobromine: a pilot study[J]. Oral Health and Preventive Dentistry, 2012, 10(3): 275-282.
[48] Shiau H J.Dentin hypersensitivity[J]. Journal of Evidence Based Dental Practice, 2012, 12(3): 220-228.
[49] Amaechi B T, Mathews S M, Mensinkai P K.Effect of theobromine-containing toothpaste on dentin tubule occlusion in situ[J]. Clinical Oral Investigations, 2015, 19: 109-116.
[50] A·赛之霍普尔, 中本哲夫. 含有可可碱的组合物和它们在治疗牙齿过敏症中的用途: CN201380032101.0[P].2019-7-30.
A. Saizhope, Tetsuo N. Compositions containing theobromine and their use in the treatment of dental hypersensitivity: CN201380032101.0 [P].2019-7-30.
[51] Nassar H M, Lippert F.Artificial caries lesion characteristics after secondary demineralization with theobromine-containing protocol[J]. Molecules, 2021, 26(2): 300. doi: 10.3390/molecules26020300.
[52] Usmani O S, Belvisi M G, Patel H J, et al.Theobromine inhibits sensory nerve activation and cough[J]. The FASEB Journal, 2005, 19(2): 1-16.
[53] Smit H J.Theobromine and the pharmacology of cocoa[J]. Methylxanthines, 2011, 200: 201-234.
[54] Becker M A.Clinical aspects of monosodium urate monohydrate crystal deposition disease (gout)[J]. Rheumatic Disease Clinics of North America, 1988, 14(2): 377-394.
[55] Grases F, Rodriguez A, Costa-Bauza A.Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis[J]. PLoS One, 2014, 9(10): e111184. doi: 10.1371/journal.pone.0111184.
[56] Papadimitriou A, Silva K C, Peixoto E B, et al.Theobromine increases NAD+/Sirt-1 activity and protects the kidney under diabetic conditions[J]. American Journal of Physiology-Renal Physiology, 2015, 308(3): 209-225.
[57] Gu R, Shi Y, Huang W, et al.Theobromine mitigates IL-1β-induced oxidative stress, inflammatory response, and degradation of type II collagen in human chondrocytes[J]. International Immunopharmacology, 2020, 82: 106226. doi: 10.1016/j.intimp.2020.106226.
[58] Martín-Peláez S, Camps-Bossacoma M, Massot-Cladera M, et al.Effect of cocoa's theobromine on intestinal microbiota of rats[J]. Molecular Nutrition &Food Research, 2017, 61(10): 1700238. doi: 10.1002/mnfr.201700238.
[59] Ashihara H, Ludwig I A, Crozier A.Plant nucleotide metabolism biosynthesis, degradation, and alkaloid formation[M]. Chichester: John Wiley & Sons Ltd, 2020: 399-404.
[60] Monteiro J, Alves M G, Oliveira P F, et al.Pharmacological potential of methylxanthines: retrospective analysis and future expectations[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(16): 2597-2625.
[61] Xie L, Guo Y, Cai B, et al.Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity[J]. Medicinal Chemistry Research, 2013, 22(7): 3372-3378.
[62] Ikeda I, Kobayashi M, Hamada T, et al.Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7303-7307.
[63] Kobayashi M, Unno T, Suzuki Y, et al.Heat-epimerized tea catechins have the same cholesterol-lowering activity as green tea catechins in cholesterol-fed rats[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(12): 2455-2458.
[64] Lee S M, Kim C W, Kim J K, et al.GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats[J]. Lipids, 2008, 43(5): 419-429.
[65] Lu C, Hwang L S.Polyphenol contents of Pu-erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line[J]. Food Chemistry, 2008, 111(1): 67-71.
[66] Yilmazer-Musa M, Griffith A M, Michels A J, et al.Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8924-8929.
[67] Wu X Q, Ding H F, Hu X, et al.Exploring inhibitory mechanism of gallocatechin gallate on α-amylase and α-glucosidase relevant to postprandial hyperglycemia[J]. Journal of Functional Foods, 2018, 48: 200-209.
[68] Xie L W, Guo Y P, Cai B, et al.Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity[J]. Medicinal Chemistry Research, 2013, 22: 3372-3378.
[69] Wu X Q, Zhang G W, Hu M M, et al.Molecular characteristics of gallocatechin gallate affecting protein glycation[J]. Food Hydrocolloids, 2020, 105: 105782. doi: 10.1016/j.foodhyd.2020.105782.
[70] Park D H, Park J Y, Kang K S, et al.Neuroprotective effect of gallocatechin gallate on glutamate-induced oxidative stress in hippocampal HT22 cells[J]. Molecules, 2021, 26(5): 1387. doi: 10.3390/molecules26051387.
[71] Guo Q, Zhao B L, Shen S R, et al.ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers[J]. Biochimica et Biophysica Acta, 1999, 1427(1): 13-23.
[72] No J K, Kim Y J, Shim K H, et al.Inhibition of tyrosinase by green tea components[J]. Life Sciences, 1999, 65(21): 241-246.
[73] Hara-Kudo Y, Yamasaki A, Sasaki M, et al.Antibacterial action on pathogenic bacterial spore by green tea catechins[J]. Journal of the Science of Food and Agriculture, 2005, 85(14): 2354-2361.
[74] Sugita-Konishi Y, Hara-Kudo Y, Amano F, et al.Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7[J]. Biochimica et Biophysica Acta, 1999,1472(1-2):42-50.
[75] Hui X, Hua S, Wu Q, et al.Antimicrobial mechanism of epigallocatechin gallate and gallocatechin gallate: they target 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway[J]. Archives of Biochemistry and Biophysics, 2017, 622: 1-8.
[76] Li K K, Peng J M, Zhu W, et al.Gallocatechin gallate (GCG) inhibits 3T3-L1 differentiation and lipopolysaccharide induced inflammation through MAPK and NF-κB signaling[J]. Journal of Functional Foods, 2017, 30: 159-167.
[77] Johansson N, Ahonen M, Kähäri V M.Matrix metalloproteinases in tumor invasion[J]. Cellular and Molecular Life Sciences CMLS, 2000, 57(1): 5-15.
[78] Dell’Agli M, Bellosta S, Rizzi L, et al. A structure-activity study for the inhibition of metalloproteinase-9 activity and gene expression by analogues of gallocatechin-3-gallate[J]. Cellular and Molecular Life Sciences CMLS, 2005, 62: 2896-2903.
[79] Shin S, Lee Y.Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways[J]. Experimental & Molecular Medicine, 2013, 45: e17. doi: 10.1038/emm.2013.20.
[80] Zhang X, Li J, Li Y, et al.Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells[J]. Fitoterapia, 2020, 145: 104634. doi: 10.1016/j.fitote.2020.104634.
[81] 吴命燕, 范方媛, 梁月荣, 等. 咖啡碱的生理功能及其作用机制[J]. 茶叶科学, 2010, 30(4): 235-242.
Wu M Y, Fan F Y, Liang Y R, et al.The physiological functions of caffeine and their related mechanisms[J]. Journal of Tea Science, 2010, 30(4): 235-242.
[82] 张梁, 陈欣, 陈博, 等. 茶多酚体内吸收、分布、代谢和排泄研究进展[J]. 安徽农业大学学报, 2016, 43(5): 667-675.
Zhang L, Chen X, Chen B, et al.Research progress in the absorption, distribution, metabolism and excretion of tea polyphenols in vivo[J]. Journal of Anhui Agricultural University, 2016, 43(5): 667-675.
[83] Xie Y L, Kosińska A, Xu H R, et al.Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model[J]. Food Research International, 2013, 53(2): 793-800.
Outlines

/