[1] 叶创兴, 郑新强, 袁长春, 等. 无咖啡因茶树新资源可可茶研究综述[J]. 广东农业科学, 2001(2): 12-15.
Ye C X, Zheng X Q, Yuan C C, et al.Research on cocoa tea, a new source of decaffeinated tea tree[J]. Journal of Guangdong Agriculture Science, 2001(2): 12-15.
[2] 张娅楠, 陶琳琳, 高路, 等. 可可茶化学成分及药理功能的研究进展[J]. 食品科技, 2020, 45(7): 102-107.
Zhang Y N, Tao L L, Gao L, et al.Research advance on Camellia Ptilophylla[J]. Food Science and Technology, 2020, 45(7): 102-107.
[3] 何玉媚, 彭力, 李成仁, 等. 可可茶无性系品种的生化成分研究[J]. 广东农业科学, 2011, 38(6): 10-13.
He Y M, Peng L, Li C R, et al.Research on the biochemical ingredients of cultivated varieties of cocoa tea[J]. Journal of Guangdong Agriculture Science, 2011, 38(6): 10-13.
[4] Peng L, Khan N, Afaq F, et al.In vitro and in vivo effects of water extract of white cocoa tea (Camellia ptilophylla) against human prostate cancer[J]. Pharmaceutical Research, 2010, 27(6): 1128-1137.
[5] Yang X, Wang Y, La K, et al.Inhibitory effects of cocoa tea (Camellia ptilophylla) in human hepatocellular carcinoma HepG2 in vitro and in vivo through apoptosis[J]. The Journal of Nutritional Biochemistry, 2012, 23(9): 1051-1057.
[6] Gao X, Li X, Ho C, et al.Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway[J]. Food Research International, 2020, 129: 108854. doi: 10.1016/j.foodres.2019.108854.
[7] Xie B F, Liu Z C, Pan Q C, et al.The anticancer effect and anti-DNA topoisomerase II effect of extracts of Camellia ptilophylla chang and Camellia sinesis[J]. Chinese Journal of Cancer Research, 1994, 6(3): 184-190.
[8] Yang X R, Wat E, Wang Y P, et al.Effect of dietary cocoa tea (Camellia ptilophylla) supplementation on high-fat diet-induced obesity, hepatic steatosis, and hyperlipidemia in mice[J]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 783860. doi: 10.1155/2013/783576.
[9] Li K K, Liu C L, Shiu H T, et al.Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes[J]. Scientific Reports, 2016, 6(1): 20172. doi: 10.1038/srep20172.
[10] Kurihara H, Shibata H, Fukui Y, et al.Evaluation of the hypolipemic property of Camellia sinensis var. ptilophylla on postprandial hypertriglyceridemia[J]. Journal of Agricultural and Food Chemistry, 2006, 54(14): 4977-4981.
[11] Li J, Yuan Y Q, Wang R M, et al.Herbal antihyperlipidemic formulation of cocoa tea: preparation and in vivo comparison with atorvastatin[J]. Tropical Journal of Pharmaceutical Research, 2016, 15(12): 2543-2547.
[12] Li K K, Shi X G, Yang X R, et al.Antioxidative activities and the chemical constituents of two Chinese teas, Camellia kucha and C. ptilophylla[J]. International Journal of Food Science & Technology, 2012, 47(5): 1063-1071.
[13] 彭力. 可可茶驯化选育中特征生化成分和抗癌活性的研究[D]. 广州: 中山大学, 2010.
Peng L.Characterization of biochemical components and anticancer activity in the domestication and selection of cocoa tea [D]. Guangzhou: Sun Yat-sen University, 2010.
[14] Peng L, Wang X, Shi X, et al.Characterization of the constituents and antioxidative activity of cocoa tea (Camellia ptilophylla)[J]. Food Chemistry, 2011, 129(4): 1475-1482.
[15] 娄远蕾. 镧抑制脂多糖诱导小鼠巨噬细胞产生一氧化氮的机制[D]. 南昌: 南昌大学, 2007.
Lou Y L.Mechanisms of lanthanum inhibitting the production of nitric oxide in macrophages of mice induced by lipopolysaccharide [D]. Nanchang: Nanchang University, 2007.
[16] Lin X, Chen Z, Zhang Y, et al.Interactions among chemical components of cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species[J]. Food & Function, 2014, 5(6): 1175-1185.
[17] Gao X, Lin X, Li X, et al.Cellular antioxidant, methylglyoxal trapping, and anti-inflammatory activities of cocoa tea (Camellia ptilophylla Chang)[J]. Food & Function, 2017, 8(8): 2836-2846.
[18] Batterman R C, Grossman A J, Duninsky J, et al.Reevaluation of the usefulness of theobromine calcium gluconate for the management of congestive heart failure and anginal syndrome[J]. International Record of Medicine and General Practice Clinics, 1959, 172(6): 318-323.
[19] Boden W E.High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from framingham to the veterans affairs high-density lipoprotein intervention trial[J]. The American Journal of Cardiology, 2000, 86(12): 19-22.
[20] Assmann G, Gotto A M.HDL cholesterol and protective factors in atherosclerosis[J]. Circulation, 2004, 109(23): 8-14.
[21] Lee J, Shirk A, Oram J F, et al.Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway[J]. Biochemical Journal, 2002, 364(2): 475-484.
[22] Neufingerl N, Zebregs Y E, Schuring E A, et al.Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2013, 97(6): 1201-1209.
[23] Barcz E, Sommer E, Sokolnicka I, et al.The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells[J]. Oncology Reports, 1998, 5(2): 517-537.
[24] Skopińska-Rózewska E, Sommer E, Demkow U, et al.Screening of angiogenesis inhibitors by modified tumor-induced angiogenesis (TIA) test in lung cancer[J]. Roczniki Akademii Medycznej W Białymstoku, 1997, 42(1): 287-296.
[25] Gil M, Skopińska-Rózewska E, Radomska D, et al.Effect of purinergic receptor antagonists suramin and theobromine on tumor-induced angiogenesis in BALB/c mice[J]. Folia Biologica, 1993, 39(2): 63-68.
[26] Barcz E, Sommer E, Janik P, et al.Adenosine receptor antagonism causes inhibition of angiogenic activity of human ovarian cancer cells[J]. Oncology Reports, 2000, 7(6): 1285-1376.
[27] Sugimoto N, Miwa S, Hitomi Y, et al.Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B[J]. Nutrition and Cancer, 2014, 66(3): 419-423.
[28] Carla-Cadoná F, Kolinski-Machado A, Farina-Azzolin V, et al.Guaraná a caffeine-rich food increases oxaliplatin sensitivity of colorectal HT-29 cells by apoptosis pathway modulation[J]. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16(8): 1055-1065.
[29] Shojaei-Zarghani S, Rafraf M, Khosroushahi A Y, et al.Effectiveness of theobromine on inhibition of 1, 2-dimethylhydrazine-induced rat colon cancer by suppression of the Akt/GSK3β/β-catenin signaling pathway[J]. Journal of Functional Foods, 2020, 75: 104293. doi: 10.1016/j.jff.2020.104293.
[30] Shojaei-Zarghani S, Khosroushahi A Y, Rafraf M.Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111140. doi: 10.1016/j.biopha.2020.111140.
[31] Fuggetta M P, Zonfrillo M, Villivà C, et al.Inflammatory microenvironment and adipogenic differentiation in obesity: the inhibitory effect of theobromine in a model of human obesity in vitro[J]. Mediators of Inflammation, 2019, 2019: 1515621. doi: 10.1155/2019/1515621.
[32] Jang Y J, Koo H J, Sohn E, et al.Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways[J]. Food & Function, 2015, 6(7): 2365-2374.
[33] Mitani T, Watanabe S, Yoshioka Y, et al.Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1[J]. Biochimica Et Biophysica Acta, 2017, 1864(12): 2438-2448.
[34] Ikeda K, Yamada T.UCP1 dependent and independent thermogenesis in brown and beige adipocytes[J]. Frontiers in Endocrinology, 2020, 11: 498. doi: 10.3389/fendo.2020.00498.
[35] Jang M H, Kang N H, Mukherjee S, et al.Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes[J]. Biotechnology and Bioprocess Engineering, 2018, 23(6): 617-626.
[36] Jang M H, Mukherjee S, Choi M J, et al.Theobromine alleviates diet-induced obesity in mice via phosphodiesterase-4 inhibition[J]. European Journal of Nutrition, 2020, 59: 3503-3516.
[37] 程青格, 龚其海. 阿尔茨海默病的发病机制及治疗研究进展[J]. 遵义医学院学报, 2013, 36(6): 586-589.
Cheng Q G, Gong Q H.Research advances on the pathogenesis and treatment of Alzheimer's disease[J]. Acta Academiae Medicine Zunyi, 2013, 36(6): 586-589.
[38] Liu C, Kanekiyo T, Xu H, et al.Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy[J]. Nature Reviews Neurology, 2013, 9(2): 106-118.
[39] Holtzman D M, Herz J, Bu G.Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(3): a006312. doi: 10.1101/cshperspect.a006312.
[40] Mendiola-Precoma J, Padilla K, Rodríguez-Cruz A, et al.Theobromine-induced changes in A1 Purinergic receptor gene expression and distribution in a rat brain Alzheimer’s disease model[J]. Journal of Alzheimer's Disease, 2017, 55(3): 1273-1283.
[41] Chen D Y, Bambah-Mukku D, Pollonini G, et al.Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation[J]. Nature Neuroscience, 2012, 15(12): 1707-1714.
[42] Islam R, Matsuzaki K, Sumiyoshi E, et al.Theobromine improves working memory by activating the CaMKII/CREB/BDNF pathway in rats[J]. Nutrients, 2019, 11(4): 888. doi: 10.3390/nu11040888.
[43] Yoneda M, Sugimoto N, Katakura M, et al.Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice[J]. The Journal of Nutritional Biochemistry, 2017, 39: 110-116.
[44] 陈智, 张露. 基于龋风险评估的龋病治疗计划[J]. 中华口腔医学杂志, 2021, 56(1): 45-50.
Chen Z, Zhang L.Caries treatment planning based on caries risk assessment[J]. Chinese Journal of Stomatology, 2021, 56(1): 45-50.
[45] Strålfors A.Effect on hamster caries by purine derivatives vanillin and some tannin-containing materials caries in relation to food consumption and animal growth[J]. Archives of Oral Biology, 1967, 12(3): 321-332.
[46] Sadeghpour A.A neural network analysis of theobromine vs. fluoride on the enamel surface of human teeth: an experimental case study with strong implications for the production of a new line of revolutionary and natural non-fluoride based dentifrices[J]. Dissertation Abstracts International, 2007, 68(7): 150.
[47] Kargul B, Özcan M, Peker S, et al.Evaluation of human enamel surfaces treated with theobromine: a pilot study[J]. Oral Health and Preventive Dentistry, 2012, 10(3): 275-282.
[48] Shiau H J.Dentin hypersensitivity[J]. Journal of Evidence Based Dental Practice, 2012, 12(3): 220-228.
[49] Amaechi B T, Mathews S M, Mensinkai P K.Effect of theobromine-containing toothpaste on dentin tubule occlusion in situ[J]. Clinical Oral Investigations, 2015, 19: 109-116.
[50] A·赛之霍普尔, 中本哲夫. 含有可可碱的组合物和它们在治疗牙齿过敏症中的用途: CN201380032101.0[P].2019-7-30.
A. Saizhope, Tetsuo N. Compositions containing theobromine and their use in the treatment of dental hypersensitivity: CN201380032101.0 [P].2019-7-30.
[51] Nassar H M, Lippert F.Artificial caries lesion characteristics after secondary demineralization with theobromine-containing protocol[J]. Molecules, 2021, 26(2): 300. doi: 10.3390/molecules26020300.
[52] Usmani O S, Belvisi M G, Patel H J, et al.Theobromine inhibits sensory nerve activation and cough[J]. The FASEB Journal, 2005, 19(2): 1-16.
[53] Smit H J.Theobromine and the pharmacology of cocoa[J]. Methylxanthines, 2011, 200: 201-234.
[54] Becker M A.Clinical aspects of monosodium urate monohydrate crystal deposition disease (gout)[J]. Rheumatic Disease Clinics of North America, 1988, 14(2): 377-394.
[55] Grases F, Rodriguez A, Costa-Bauza A.Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis[J]. PLoS One, 2014, 9(10): e111184. doi: 10.1371/journal.pone.0111184.
[56] Papadimitriou A, Silva K C, Peixoto E B, et al.Theobromine increases NAD+/Sirt-1 activity and protects the kidney under diabetic conditions[J]. American Journal of Physiology-Renal Physiology, 2015, 308(3): 209-225.
[57] Gu R, Shi Y, Huang W, et al.Theobromine mitigates IL-1β-induced oxidative stress, inflammatory response, and degradation of type II collagen in human chondrocytes[J]. International Immunopharmacology, 2020, 82: 106226. doi: 10.1016/j.intimp.2020.106226.
[58] Martín-Peláez S, Camps-Bossacoma M, Massot-Cladera M, et al.Effect of cocoa's theobromine on intestinal microbiota of rats[J]. Molecular Nutrition &Food Research, 2017, 61(10): 1700238. doi: 10.1002/mnfr.201700238.
[59] Ashihara H, Ludwig I A, Crozier A.Plant nucleotide metabolism biosynthesis, degradation, and alkaloid formation[M]. Chichester: John Wiley & Sons Ltd, 2020: 399-404.
[60] Monteiro J, Alves M G, Oliveira P F, et al.Pharmacological potential of methylxanthines: retrospective analysis and future expectations[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(16): 2597-2625.
[61] Xie L, Guo Y, Cai B, et al.Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity[J]. Medicinal Chemistry Research, 2013, 22(7): 3372-3378.
[62] Ikeda I, Kobayashi M, Hamada T, et al.Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7303-7307.
[63] Kobayashi M, Unno T, Suzuki Y, et al.Heat-epimerized tea catechins have the same cholesterol-lowering activity as green tea catechins in cholesterol-fed rats[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(12): 2455-2458.
[64] Lee S M, Kim C W, Kim J K, et al.GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats[J]. Lipids, 2008, 43(5): 419-429.
[65] Lu C, Hwang L S.Polyphenol contents of Pu-erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line[J]. Food Chemistry, 2008, 111(1): 67-71.
[66] Yilmazer-Musa M, Griffith A M, Michels A J, et al.Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8924-8929.
[67] Wu X Q, Ding H F, Hu X, et al.Exploring inhibitory mechanism of gallocatechin gallate on α-amylase and α-glucosidase relevant to postprandial hyperglycemia[J]. Journal of Functional Foods, 2018, 48: 200-209.
[68] Xie L W, Guo Y P, Cai B, et al.Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity[J]. Medicinal Chemistry Research, 2013, 22: 3372-3378.
[69] Wu X Q, Zhang G W, Hu M M, et al.Molecular characteristics of gallocatechin gallate affecting protein glycation[J]. Food Hydrocolloids, 2020, 105: 105782. doi: 10.1016/j.foodhyd.2020.105782.
[70] Park D H, Park J Y, Kang K S, et al.Neuroprotective effect of gallocatechin gallate on glutamate-induced oxidative stress in hippocampal HT22 cells[J]. Molecules, 2021, 26(5): 1387. doi: 10.3390/molecules26051387.
[71] Guo Q, Zhao B L, Shen S R, et al.ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers[J]. Biochimica et Biophysica Acta, 1999, 1427(1): 13-23.
[72] No J K, Kim Y J, Shim K H, et al.Inhibition of tyrosinase by green tea components[J]. Life Sciences, 1999, 65(21): 241-246.
[73] Hara-Kudo Y, Yamasaki A, Sasaki M, et al.Antibacterial action on pathogenic bacterial spore by green tea catechins[J]. Journal of the Science of Food and Agriculture, 2005, 85(14): 2354-2361.
[74] Sugita-Konishi Y, Hara-Kudo Y, Amano F, et al.Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7[J]. Biochimica et Biophysica Acta, 1999,1472(1-2):42-50.
[75] Hui X, Hua S, Wu Q, et al.Antimicrobial mechanism of epigallocatechin gallate and gallocatechin gallate: they target 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway[J]. Archives of Biochemistry and Biophysics, 2017, 622: 1-8.
[76] Li K K, Peng J M, Zhu W, et al.Gallocatechin gallate (GCG) inhibits 3T3-L1 differentiation and lipopolysaccharide induced inflammation through MAPK and NF-κB signaling[J]. Journal of Functional Foods, 2017, 30: 159-167.
[77] Johansson N, Ahonen M, Kähäri V M.Matrix metalloproteinases in tumor invasion[J]. Cellular and Molecular Life Sciences CMLS, 2000, 57(1): 5-15.
[78] Dell’Agli M, Bellosta S, Rizzi L, et al. A structure-activity study for the inhibition of metalloproteinase-9 activity and gene expression by analogues of gallocatechin-3-gallate[J]. Cellular and Molecular Life Sciences CMLS, 2005, 62: 2896-2903.
[79] Shin S, Lee Y.Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways[J]. Experimental & Molecular Medicine, 2013, 45: e17. doi: 10.1038/emm.2013.20.
[80] Zhang X, Li J, Li Y, et al.Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells[J]. Fitoterapia, 2020, 145: 104634. doi: 10.1016/j.fitote.2020.104634.
[81] 吴命燕, 范方媛, 梁月荣, 等. 咖啡碱的生理功能及其作用机制[J]. 茶叶科学, 2010, 30(4): 235-242.
Wu M Y, Fan F Y, Liang Y R, et al.The physiological functions of caffeine and their related mechanisms[J]. Journal of Tea Science, 2010, 30(4): 235-242.
[82] 张梁, 陈欣, 陈博, 等. 茶多酚体内吸收、分布、代谢和排泄研究进展[J]. 安徽农业大学学报, 2016, 43(5): 667-675.
Zhang L, Chen X, Chen B, et al.Research progress in the absorption, distribution, metabolism and excretion of tea polyphenols in vivo[J]. Journal of Anhui Agricultural University, 2016, 43(5): 667-675.
[83] Xie Y L, Kosińska A, Xu H R, et al.Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model[J]. Food Research International, 2013, 53(2): 793-800.