Welcome to Journal of Tea Science,Today is
Research Paper

Dynamic Changes of Physiological Responses and Antioxidant Enzyme Activities in Tea Root System under Severe Shading and Removal of Shading

  • JIAO Haizhen ,
  • SHAO Chenyu ,
  • CHEN Jianjiao ,
  • ZHANG Chenyu ,
  • CHEN Jiahao ,
  • LI Yunfei ,
  • SHEN Chengwen
Expand
  • 1. Lab of Tea Science of China Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
    2. National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China;
    3. College of Horticulture, Hunan Agricultural University, Changsha 410128, China

Received date: 2021-02-02

  Revised date: 2021-03-09

  Online published: 2021-10-12

Abstract

Shading is one of the important measures to improve the quality of summer and autumn tea. There were a lot of studies on the effect of shading on tea leaves, but there were few reports on the root system. In this study, a pot experiment was used to explore the dynamic changes of physiological indexes and antioxidant enzyme activities of ‘Xiangfeicui’ and ‘Jinxuan’ under 95% shading treatment. Data were collected after shading for 0, 4, 12 d and the 4 d after regaining light. The results show that the number of new absorbing roots and lateral roots of tea plants increased after shading for 12 d, and decreased on the 4th day after regaining light. The trends of root vigor changes were the same. The soluble sugar content of ‘Xiangfeicui’ increased after shading, and the soluble sugars of ‘Xiangfeicui’ and ‘Jinxuan’ increased by 5.82% and 8.04% on the 4th day after regaining light. On the 4th day of heavy shading, the APX and POD activities of the two cultivars reached the peaks. On the 12th day of shading, the activities of SOD and APX the highest. The APX activity of tea roots after regaining light was significantly higher than that without shading. This study reveals that the roots of tea plants were osmotically regulated by increasing the content of soluble sugars, enhancing root vigor to absorb and transport nutrients, and increasing antioxidant enzyme activities to scavenging free radicals in response to heavy shade environments. Under a shading environment (95%), ‘Jinxuan’ was more shade-tolerant, and regaining light might cause a certain degree of stress to the roots of tea plants.

Cite this article

JIAO Haizhen , SHAO Chenyu , CHEN Jianjiao , ZHANG Chenyu , CHEN Jiahao , LI Yunfei , SHEN Chengwen . Dynamic Changes of Physiological Responses and Antioxidant Enzyme Activities in Tea Root System under Severe Shading and Removal of Shading[J]. Journal of Tea Science, 2021 , 41(5) : 695 -704 . DOI: 10.13305/j.cnki.jts.2021.05.005

References

[1] Xu W P, Song Q S, Li D X, et al.Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition[J]. Journal of Agricultural and Food Chemistry, 2012, 60(28): 7064-7070.
[2] Sano S, Takemoto T, Ogihara A, et al.Stress responses of shade-treated tea leaves to high light exposure after removal of shading[J]. Plants, 2020, 9(3): 302. doi: 10.3390/plants9030302.
[3] 汤雯, 屠幼英. 利用加工方法提高夏秋茶品质研究进展[J]. 茶叶, 2010, 36(2): 77-81.
Tang W, Tu Y Y.A review on processing techniques to improve quality of summer-autumn tea[J]. Journal of Tea, 2010, 36(2): 77-81.
[4] Dai W, Qi D, Yang T, et al.Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9869-9878.
[5] Li X, Ahammed G J, Li Z X, et al.Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids[J]. Frontiers in Plant Science, 2016, 7: 1304. doi: 10.3389/fpls.2016.01304.
[6] Yamashita H, Tanaka Y, Umetsu K, et al.Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation[J]. Frontiers in Plant Science, 2020, 11: 556476. doi: 10.3389/fpls.2020.556476.
[7] 王雪萍, 龚自明. 夏秋季茶树遮阴效应研究进展[J]. 湖北农业科学, 2017, 56(23): 4447-4449, 4453.
Wang X P, Gong Z M.Research progress of shading effect of tea in summer and autumn[J]. Hubei Agricultural Sciences, 2017, 56(23): 4447-4449, 4453.
[8] Fu J J, Luo Y L, Sun P Y, et al.Effects of shade stress on turfgrasses morphophysiology and rhizosphere soil bacterial communities[J]. BMC Plant Biology, 2020, 20: 92. doi: 10.1186/s12870-020-2300-2.
[9] Liu L L, Li Y Y, She G B, et al.Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading[J]. BMC Plant Biology, 2018, 18(1): 233. doi: 10.1186/s12870-018-1440-0.
[10] Takemoto T, Hayashi K.Effect of the difference in the covering methods on growth of tea tree and the canopy surface temperature in summer based on thermal images[J]. Tea Research Journal, 2019, 127: 1-10.
[11] 黄永韬, 杨好珍, 黄永芳, 等. 不同遮阴处理对3种茶花生理特性的影响[J]. 广东林业科技, 2012, 28(5): 16-21.
Huang Y T, Yang H Z, Huang Y F, et al.Effects of the physiological indices in three varieties of Camellia by different shade treatments[J]. Guangdong Forestry Science and Technology, 2012, 28(5): 16-21.
[12] 王国夫, 孙小红, 方逸, 等. 遮阴对抹茶茶园土壤微生物特性及土壤酶活性的影响[J]. 茶叶科学, 2019, 39(3): 355-363.
Wang G F, Sun X H, Fang Y, et al.Effects of Shading on microbial characteristics and enzyme activities in matcha tea garden soil[J]. Journal of Tea Science, 2019, 39(3): 355-363.
[13] Kumar V, Vogelsang L, Schmidt R R, et al.Remodeling of root growth under combined arsenic and hypoxia stress is linked to nutrient deprivation[J]. Frontiers in Plant Science, 2020, 11: 569687. doi: 10.3389/fpls.2020.569687.
[14] 王丽, 邓飞, 郑军, 等. 水稻根系生长对弱光胁迫的响应[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 700-708.
Wang L, Deng F, Zheng J, et al.Response of root system growth to low-light stress in indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 700-708.
[15] 曾艳. 氮肥、土壤质地对茶树根系生长特性影响的研究[D]. 成都: 四川农业大学, 2014.
Zeng Y.The effect of nitrogen and soil textures on the roots of tea plants (Camellia sinensis) [D]. Chengdu: Sichuan Agricultural University, 2014.
[16] 萧浪涛, 王三根. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2005: 67-70.
Xiao L T, Wang S G.Experimental techniques of plant physiology [M]. Beijing: China Agriculture Press, 2005: 67-70.
[17] 樊明寿, 张福锁. 植物通气组织的形成过程和生理生态学意义[J]. 植物生理学通讯, 2002(6): 615-618.
Fan M S, Zhang F S.Aerenchyma formation in plant and its physiological and ecological significance[J]. Plant Physiology Communications, 2002(6): 615-618.
[18] 骆耀平. 茶树栽培学[M]. 5版. 北京: 中国农业出版社, 2015: 77.
Luo Y P.Tea cultivation [M]. 5th ed. Beijing: China Agriculture Press, 2015: 77.
[19] Jackson M B.Regulation of aerenchyma formation in roots and shoots by oxygen and ethylene[J]. Cell Biology, 1989, 35: 263-274.
[20] 孔妤, 王忠, 顾蕴洁, 等. 植物根内通气组织形成的研究进展[J]. 植物学通报, 2008, 25(2): 248-253.
Kong Y, Wang Z, Gu Y J, et al.Research progress on the formation of aerenchyma in plant roots[J]. Bulletin of Botany, 2008, 25(2): 248-253.
[21] Guo D L, Xia M X, Wei X, et al.Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673-683.
[22] 闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4): 36-43.
Yan G Y, Wang X C, Xing Y J, et al.Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43.
[23] 汤绍虎, 周启贵, 龙云, 等. 基因活化剂对紫肉甘薯根系活力的影响[J]. 西南大学学报(自然科学版), 2008, 30(4): 92-95.
Tang S H, Zhou Q G, Long Y, et al.Effect of gene activator on root vigor of purple flesh sweet potato[J]. Journal of Southwest University (Natural Science Edition), 2008, 30(4): 92-95.
[24] 陶汉之, 张承慧. 遮荫茶树光合特性研究[J]. 植物生理学通讯, 1986(6): 42-46.
Tao H Z, Zhang C H.Study on the photosynthetic characteristics of shading tea plants[J]. Plant Physiology Communications, 1986(6): 42-46.
[25] 王梅, 徐正茹, 张建旗, 等. 遮阴对10种野生观赏植物生长及生理特性的影响[J]. 草业科学, 2017, 34(5): 1008-1016.
Wang M, Xu Z R, Zhang J Q, et al.Effect of shade on growth and physiological characteristics of 10 species of wild ornamental plants in Lanzhou[J]. Pratacultural Scinence, 2017, 34(5): 1008-1016.
[26] Jeroen L, Johannes H, Sjef S.Sugar signals and the control of plant growth and development[J]. Journal of Experimental Botany, 2014, 65(3): 799-807.
[27] 邱乾栋, 吕晓贞, 臧德奎, 等. 植物抗寒生理研究进展[J]. 山东农业科学, 2009(8): 53-57.
Qiu Q D, Lv X Z, Zang D K, et al.Research progress on plant physiology of cold resistance[J]. Shandong Agricultural Sciences, 2009(8): 53-57.
[28] Larkindale J, Huang B.Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. Journal of Plant Physiology, 2004, 161(4): 405-413.
[29] 杨野, 郭再华, 耿明建, 等. 铝胁迫下不同耐铝小麦品种活性氧代谢差异及与小麦耐铝性的关系[J]. 生态环境学报, 2010, 19(1): 177-182.
Yang Y, Guo Z H, Geng M J, et al.Difference in active oxygen metabolism of different aluminum-tolerant wheat varieties under aluminum stress and its relationship with aluminum tolerance[J]. Ecology and Environmental Sciences, 2010, 19(1): 177-182.
[30] 周琳, 陈周一琪, 王玉花, 等. 光质对茶树愈伤组织中茶多酚及抗氧化酶活性的影响[J]. 茶叶科学, 2012, 32(3): 210-216.
Zhou L, Chen Z Y Q, Wang Y H, et al. Effect of light quality on tea polyphenol content and activities of antioxidantive enzymes in tea callus[J]. Journal of Tea Science, 2012, 32(3): 210-216.
[31] 屠幼英, 杨秀芳, 杨贤强. 茶树抗逆境生理与超氧歧化酶(SOD)的相关性[J]. 茶叶, 1996, 22(2): 40-43.
Tu Y Y, Yang X F, Yang X Q.Correlation between the anti-stress biology of tea tree and superoxide dismutase (SOD)[J]. Journal of Tea, 1996, 22(2): 40-43.
[32] 牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21): 7333-7341.
Niu S Z, Song Q F, Fang W G, et al.Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333-7341.
[33] 郭春芳, 孙云, 张云, 等. 茶树叶片抗氧化系统对土壤水分胁迫的响应[J]. 福建农林大学学报(自然科学版), 2008, 37(6): 580-586.
Guo C F, Sun Y, Zhang Y, et al.Effects of soil water stress on the antioxidant system in leaves of tea plants (Camellia sinensis)[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2008, 37(6): 580-586.
[34] Yoshimura K, Yabuta Y, Ishikawa T, et al.Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses[J]. Plant Physiology, 2000, 123(1): 223-233.
[35] 王亚丽, 仪慧兰, 韩彦莎. SO2对谷子幼苗根系镉胁迫的缓解作用[J]. 农业环境科学学报, 2017, 36(3): 443-448.
Wang Y L, Yi H L, Han Y S.Sulfur dioxide alleviates cadmium toxicity in the roots of foxtail millet seedlings[J]. Journal of Agro-Environment Science, 2017, 36(3): 443-448.
[36] Nalina M, Saroja S, Chakravarthi M, et al.Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition[J]. Acta Physiologiae Plant, 2021, 43(1): 10. doi: 10.1007/s11738-020-03174-1.
Outlines

/