Welcome to Journal of Tea Science,Today is
Research Paper

Effects of Anaerobic Treatment on Amino Acid Composition and Biological Activities of Different Type Teas

  • YANG Gaozhong ,
  • PENG Qunhua ,
  • ZHANG Yue ,
  • SHI Jiang ,
  • LIN Zhi ,
  • LÜ Haipeng
Expand
  • 1. Key Lab of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2021-10-09

  Revised date: 2022-01-13

  Online published: 2022-04-15

Abstract

The same batch of fresh tea leaves after 7 hours anaerobic treatment was processed into green tea, white tea, oolong tea, black tea, and dark raw tea according to different processing technologies. The amino acid composition and content, angiotensin converting enzyme (ACE) inhibitory activity were determined, and their antioxidant activities were also measured by determining cellular antioxidant activity (CAA), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging capacity, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical scavenging capacity, superoxide anion radical absorbance capacity, and ferric ion reducing antioxidant power (FRAP). Results show that the composition and content of free amino acids in different types of teas varied significantly which were processed after anaerobic treatment, and especially the content of γ-aminobutyric acid (GABA) increased significantly. The highest GABA content was found in green tea (2.21 mg·g-1), followed by oolong tea (2.19 mg·g-1), while the lowest in black tea (0.86 mg·g-1). Moreover, green tea and dark raw tea showed the strongest inhibition rate of ACE (35.7% and 37.2%, respectively), while black tea showed the weakest inhibitory activity against ACE (23.8%). Additionally, it was found that green tea had the strongest antioxidant activity among the different types of teas processed from the same fresh tea leaves after anaerobic treatment.

Cite this article

YANG Gaozhong , PENG Qunhua , ZHANG Yue , SHI Jiang , LIN Zhi , LÜ Haipeng . Effects of Anaerobic Treatment on Amino Acid Composition and Biological Activities of Different Type Teas[J]. Journal of Tea Science, 2022 , 42(2) : 222 -232 . DOI: 10.13305/j.cnki.jts.2022.02.002

References

[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545.
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in China: An updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545.
[2] 廖梦阳, 程龙献, 廖玉华. 肾素-血管紧张素系统的回顾[J]. 临床心血管病杂志, 2012, 28(2): 83-87.
Liao M Y, Cheng L X, Liao Y H.Review of renin-angiotensin system[J]. Journal of Clinical Cardiology, 2012, 28(2): 83-87.
[3] Actis-Goretta L, Ottaviani J I, Fraga C G.Inhibition of angiotensin converting enzyme activity by flavanol-rich foods[J]. Journal of Agricultural and Food Chemistry, 2006, 54(1): 229-234.
[4] 于志鹏, 赵文竹, 刘博群, 等. 血管紧张素转化酶抑制肽研究进展[J]. 食品科学, 2010, 31(11): 308-311.
Yu Z P, Zhao W Z, Liu B Q, et al.Research progress of angiotensin converting enzyme inhibitory peptides[J]. Food Science, 2010, 31(11): 308-311.
[5] DianaI M, Quilez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review[J]. Journal of Functional Foods, 2014, 10: 407-420.
[6] Abe Y, Umemura S, Sugimoto K, et al.Effect of green tea rich in γ-aminobutyric acid on blood pressure of dahl salt-sensitive rats[J]. American Journal of Hypertension, 1995, 8(1): 74-79.
[7] 林智, 大森正司. γ-氨基丁酸茶成分对大鼠血管紧张素I转换酶(ACE)活性的影响[J]. 茶叶科学, 2002,22(1): 43-46.
Lin Z, Masashi O.Effects of Gabaron tea components on angiotension I-converting enzyme activity in rat[J]. Journal of Tea Science, 2002, 22(1): 43-46.
[8] Zareian M, Oskoueia E, Forghani B, et al.Production of a wheat-based fermented rice enriched with γ-amino butyric acid using lactobacillus plantarum MNZ and its antihypertensive effects in spontaneously hypertensive rats[J]. Journal of Functional Foods, 2015, 16: 194-203.
[9] Zareian M, Oskoueia E, Majdinasab M, et al.Production of GABA-enriched Idli with ACE inhibitory and antioxidant properties using Aspergillus Oryzae: the antihypertensive effects in spontaneously hypertensive rats[J]. Food & Function, 2020, 11(5): 4304-4313.
[10] Yu Z, Yang Z.Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia Sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844-858.
[11] 林智, 大森正司. γ-氨基丁酸茶(Gabaron Tea)降血压机理的研究[J]. 茶叶科学, 2001, 21(2): 153-156, 136.
Lin Z, Masashi O.Study on the functional mechanism of Gabaron tea on hypertension[J]. Journal of Tea Science, 2001, 21(2): 153-156, 136.
[12] 高玉佩, 朱澄澄, 马煜明, 等. 高γ-氨基丁酸含量白茶的茶树品种适制性及工艺研究初探[J]. 中国茶叶加工, 2017(2): 5-10.
Gao Y P, Zhu C C, Ma Y M, et al.Primary research on processing and processing suitability of white tea cultivars with high GABA content[J]. China Tea Processing, 2017(2): 5-10.
[13] 林智, 林钟鸣, 尹军峰, 等. 厌氧处理对茶叶中γ-氨基丁酸含量及其品质的影响[J]. 食品科学, 2004, 25(2): 35-39.
Lin Z, Lin Z M, Yin J F, et al.Influence of anaerobic treatment on the amount of γ-aminobutyric acid and the quality of tea[J]. Food Science, 2004, 25(2): 35-39.
[14] 张金玉, 李美凤, 郜秋艳, 等. 不同厌氧时间对绿茶和红茶加工品质的影响[J]. 茶叶学报, 2021, 62(2): 78-84.
Zhang J Y, Li M F, Gao Q Y, et al.Effect of anaerobic treatment time on quality of green and black teas[J]. Acta Tea Sinica, 2021, 62(2): 78-84.
[15] 沈强, 潘科, 郑文佳, 等. 厌氧/好氧处理对茶叶中GABA含量富集及其品质的影响研究[J]. 西南大学学报(自然科学版), 2012, 34(9): 146-152.
Shen Q, Pan K, Zheng W J, et al.Effect of anaerobic and aerobic treatment on γ-aminobutyric acid enrichment in tea and on its quality[J]. Journal of Southwest University (Natural Science Edition), 2012, 34(9): 146-152.
[16] Wu Q Y, Ma S Z, Zhang W W, et al.Accumulating pathways of γ-aminobutyric acid during anaerobic and aerobic sequential incubations in fresh tea leaves[J]. Food Chemistry, 2018, 240: 1081-1086.
[17] 吴琴燕, 杨敬辉, 陈宏州, 等. 叶面肥喷施对茶叶中GABA含量的影响[J]. 食品研究与开发, 2013, 34(16): 1-3.
Wu Q Y, Yang J H, Chen H Z, et al.Influence of different foliar fertilizers application on γ-aminobutyric acid content in tea[J]. Food Research and Development, 2013, 34(16): 1-3.
[18] Zhao M, Ma Y, Wei Z, et al.Determination and comparison of γ-aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea[J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3641-3648.
[19] Wang H F, Tsai Y S, Lin M L, et al.Comparison of bioactive components in GABA tea and green tea produced in Taiwan[J]. Food Chemistry, 2006, 96(4): 648-653.
[20] Srinivas S M, Harohally N V.Improved synthesis of lysine- and arginine-derived amadori and heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(6): 1522-1527.
[21] Murray B A, Walsh D J, Fitzgerald R J.Modification of the furanacryloyl-l-phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity[J]. Journal of Biochemical and Biophysical Methods, 2004, 59(2): 127-137.
[22] Yu J, Zhang S, Zhang L.Amadori compounds as potent inhibitors of angiotensin-converting enzyme (ACE) and their effects on anti-ACE activity of bell peppers[J]. Journal of Functional Foods, 2016, 27: 622-630.
[23] Vermeirssen V, van Camp J, Verstraete W. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides[J]. Journal of Biochemical and Biophysical Methods, 2002, 51(1): 75-87.
[24] Wolfe K L, Liu R H.Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22): 8896-8907.
[25] 杨冬梅, 金月亭, 柯乐芹, 等. 12种常见蔬菜抗氧化活性的比较研究[J]. 中国食品学报, 2007, 7(5): 24-29.
Yang D M, Jin Y T, Ke L J, et al.Antioxidant activities of 12 common vegetables[J]. Journal of Chinese Institute of Food Science and Technology, 2007, 7(5): 24-29.
[26] 李楠, 师俊玲, 王昆. 14种海棠果实多酚种类及体外抗氧化活性分析[J]. 食品科学, 2014, 35(5): 53-58.
Li N, Shi J L, Wang K.Composition and in vitro antioxidant activity of polyphenols extracted from crabapple[J]. Food Science, 2014, 35(5): 53-58.
[27] 蔡萌, 杜双奎, 柴岩, 等. 黄土高原小粒大豆抗氧化活性研究[J]. 中国食品学报, 2014, 14(8): 108-115.
Cai M, Du S K, Chai Y, et al.Studies on antioxidant activity of small soybean from the loess plateau[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(8): 108-115.
[28] 张华, 周志钦, 席万鹏. 15种柑橘果实主要酚类物质的体外抗氧化活性比较[J]. 食品科学, 2015, 36(11): 64-70.
Zhang H, Zhou Z Q, Xi W P.Comparison of antioxidant activity in vitro of 15 major phenolic compounds in citrus fruits[J]. Food Science, 2015, 36(11): 64-70.
[29] Khan M I R, Jalil S U, Chopra P, et al. Role of GABA in plant growth, development and senescence[J]. Plant Gene, 2021, 26: 100283. doi:10.1016/j.plgene.2021.100283.
[30] Liao J, Wu X, Xing Z, et al.γ-aminobutyric acid (GABA) accumulation in tea (Camellia Sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia[J]. Journal of Agricultural and Food Chemistry, 2017, 65(14): 3013-3018.
[31] Mustroph A, Barding Jr G A, Kaiser K A, et al. Characterization of distinct root and shoot responses to low-oxygen stress in arabidopsis with a focus on primary C- and N-metabolism[J]. Plant, Cell & Environment, 2014, 37(10): 2366-2380.
[32] 宛晓春. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 88-107.
Wan X C.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015: 88-107.
[33] Dai W, Xie D, Lin Z, et al.A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA) tea[J]. LWT, 2020, 126: 109313. doi: 10.1016/j.lwt.2020.109313.
[34] Chen Q, Zhang Y, Tao M, et al.Comparative metabolic responses and adaptive strategies of tea leaves (Camellia Sinensis) to N2 and CO2 anaerobic treatment by a nontargeted metabolomics approach[J]. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9565-9572.
[35] Yilmaz C, Özdemir F, Gökmen V.Investigation of free amino acids, bioactive and neuroactive compounds in different types of tea and effect of black tea processing[J]. LWT, 2020, 117: 108655. doi: 10.1016/j.lwt.2019.108655.
[36] Dong J, Xu X, Liang Y, et al.Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia Sinensis) and links to processing method[J]. Food & Function, 2011, 2(6): 310. doi: 10.1039/c1fo10023h.
[37] 高玉萍, 唐德松, 龚淑英. 茶提取物抗氧化活性与茶多酚、儿茶素关系探究[J]. 中国食品学报, 2013, 13(6): 40-47.
Gao Y P, Tang D S, Gong S Y.The research of the relationship between antioxidation of tea extractive and tea polyphenols as well as catechins[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(6): 40-47.
[38] Wang Y, Kan Z, Thompson H J, et al.Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5423-5436.
[39] 夏春燕, 郭晓晖, 李富华, 等. 细胞抗氧化活性方法在食物抗氧化活性评价中的研究进展[J]. 食品科学, 2012, 33(15): 297-302.
Xia C Y, Guo X H, Li F H, et al.Research progress of cellular antioxidant activity assay for antioxidant evaluation of foods[J]. Food Science, 2012, 33(15): 297-302.
[40] 陈挺强, 刘淑敏, 黄惠华. 绿茶与红茶浸提液功能性成分含量和抗氧化能力的差异研究[J]. 现代食品科技, 2014, 30(10): 141-146, 193.
Chen T Q, Liu S M, Huang H H.Comparative evaluation of functional components and antioxidant activity between green and black tea extracts[J]. Modern Food Science and Technology, 2014, 30(10): 141-146, 193.
[41] Carloni P, Tiano L, Padella L, et al.Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International, 2013, 53(2): 900-908.
[42] Shahidi F, Zhong Y.Measurement of antioxidant activity[J]. Journal of Functional Foods, 2015, 18: 757-781.
Outlines

/