Welcome to Journal of Tea Science,Today is
Review

Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis)

  • XING Anqi ,
  • WU Zichen ,
  • XU Xiaohan ,
  • SUN Yi ,
  • WANG Genmei ,
  • WANG Yuhua
Expand
  • 1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
    2. Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Received date: 2021-09-01

  Revised date: 2021-11-03

  Online published: 2022-06-17

Abstract

Camellia sinensis (L.) O. Kuntze is a hyper fluoride (F) accumulation plant, whose F content in tea leaves is much higher than other plants, without any toxic symptoms. However, F is not an essential element for tea plant growth, and under high F stress, F affects the normal growth of plants by destroying the cell structure and inhibiting enzyme activities. In order to provide a theoretical basis for the future study of F accumulation in tea plants, the research progresses in the absorption, enrichment and accumulation/detoxification mechanisms of F in tea plants were reviewed.

Cite this article

XING Anqi , WU Zichen , XU Xiaohan , SUN Yi , WANG Genmei , WANG Yuhua . Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2022 , 42(3) : 301 -315 . DOI: 10.13305/j.cnki.jts.20220416.003

References

[1] 庞廷祥. 大气氟污染对作物的危害及防治措施[J]. 热带农业工程, 2000(1): 3-6, 22.
Pang T X.Harm of atmospheric fluorine pollution to crops and prevention measures[J]. Tropical Agricultural Engineering, 2000(1): 3-6, 22.
[2] 沙济琴, 郑达贤. 茶树黄棪对氟的生物积累特征[J]. 福建茶叶, 1993(3): 25-28.
Sha J Q, Zheng D X.The bioaccumulation characteristics of fluoride in Camellia sinensis ‘Huangyan'[J]. Tea in Fujian, 1993(3): 25-28.
[3] 王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869.
Wang Q Q, Xue Z H, Chen Z D, et al.Accumulation and distribution of fluoride/aluminum elements in different tea cultivars[J]. Chinese Journal of Tropical Crops, 2016, 37(5): 862-869.
[4] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482.
[5] 郜红建, 刘腾腾, 张显晨, 等. 安徽茶园土壤氟在茶树体内的富集与转运特征[J]. 环境化学, 2011, 30(8): 1462-1467.
Gao H J, Liu T T, Zhang X C, et al.Bioaccumulation and translocation of fluoride from soils to different parts of tea plants in Anhui province[J]. Environmental Chemistry, 2011, 30(8): 1462-1467.
[6] Shahab S, Mustafa G, Khan I, et al.Effects of fluoride ion toxicity on animals, plants, and soil health: a review[J]. Fluoride, 2017, 50(4): 393-408.
[7] Ni D J, Li C L.Effect of fluoride on the amino acid composition of tea leaves[J]. Research Report Fluoride, 2016, 49: 274-278.
[8] Yang X, Yu Z, Zhang B, et al.Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves[J]. Scientia Horticulturae, 2015, 184: 78-84.
[9] 高绪评, 王萍. 饮茶摄氟量的探讨[J]. 植物资源与环境, 1998 (3): 54-58.
Gao X P, Wang P.Researches of the uptaken fluorine amount from drinking tea[J]. Journal of Plant Resources and Environment, 1998 (3): 54-58.
[10] Baunthiyal M, Ranghar S.Physiological and biochemical responses of plants under fluoride stress: an overview[J]. Fluoride 2014, 47(4): 287-293.
[11] 王玉梅, 柴如山, 郜红建. 茶树根系跨膜主动吸收氟的表观特征[J]. 农业环境科学学报, 2016, 35(8): 1473-1479.
Wang Y M, Chai R S, Gao H J.Apparent characteristics of active transmembrane uptake of fluoride by tea plant roots[J]. Journal of Agro-Environment Science, 2016, 35(8): 1473-1479.
[12] 张磊, 阮建云. 茶树氟吸收动力学参数测定方法的研究[J]. 茶叶科学, 2008(3): 195-200.
Zhang L, Ruan J Y.Comparison on research methods for fluoride uptake kinetics of tea plant[J]. Journal of Tea Science, 2008(3): 195-200.
[13] 张磊. 茶树氟吸收动力学特性的研究[D]. 杭州: 中国农业科学院, 2008.
Zhang L.Research for fluoride uptake kinetics characteristic of tea plant [D]. Hangzhou: Chinese Academy of Agricultural Sciences, 2008.
[14] 彭传燚, 陈静, 蔡荟梅, 等. 茶树对氟的吸收动力学特性研究[J]. 热带作物学报, 2013, 34(3): 495-500.
Peng C Y, Chen J, Cai H M, et al.The kinetic characteristics of solution fluoride uptake by tea plant[J]. Chinese Journal of Tropical Crops, 2013, 34(3): 495-500.
[15] 秦樊鑫, 吴迪, 黄先飞, 等. 高氟病区茶园土壤氟形态及其分布特征[J]. 中国环境科学, 2014, 34(11): 2859-2865.
Qin F X, Wu D, Huang X F, et al.Distribution characteristics and speciation of fluorine in tea Garden soils in the high fluoride area[J]. China Environmental Science, 2014, 34(11): 2859-2865.
[16] 李张伟. 粤东凤凰山茶区土壤氟化学形态特征及其影响因素[J]. 环境化学, 2011, 30(8): 1468-1473.
Li Z W.Chemical forms of fluoride in soils forms 12 tea gardens of Fenghuang mountaing, East of Guangdong Province[J]. Environmental Chemistry, 2011, 30(8): 1462-1467.
[17] 谢忠雷, 陈卓, 孙文田, 等. 不同茶园茶叶氟含量及土壤氟的形态分布[J]. 吉林大学学报(地球科学版), 2008, 38(2): 293-298.
Xie Z L, Chen Z, Sun W T, et al.Content of fluoride in tea leaves and distribution of fluoride in soils from different tea gardens[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(2): 293-298.
[18] 王玉梅. 茶树根系跨膜吸收氟的微观机制和转录组学特征[D]. 合肥: 安徽农业大学, 2017.
Wang Y M.Microscopic mechanisms transcriptome characteristics of transmembrane absorption of fluoride by tea plant roots [D]. Hefei: Anhui Agricultural University, 2017.
[19] Li Q S, Lin X M, Qiao R Y, et al.Effect of fluoride treatment on gene expression in tea plant (Camellia sinensis)[J]. Scientific Reports, 2017, 7: 9847.
[20] Mcilwain B C, Ruprecht M T, Stockbridge R B.Membrane exporters of fluoride ion[J]. Annual Review of Biochemistry, 2021, 90(1): 559-579.
[21] Xing A Q, Ma Y C, Wu Z C, et al.Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants (Camellia sinensis)[J]. Functional Integrative Genomics, 2020, 20(4): 497-508.
[22] Zhu J J, Xing A Q, Wu Z C, et al.CsFEX, a fluoride export protein gene from Camellia sinensis, alleviates fluoride toxicity in transgenic Escherichia coli and Arabidopsis thaliana[J]. Journal of Agricultural Food Chemistry, 2019, 67: 5997-6006.
[23] 广敏. ABC转运蛋白介导茶树根系跨膜吸收转运氟的分子机制研究[D]. 合肥: 安徽农业大学, 2020.
Guang M.Molecular mechanisims of ABC transporter mediated transmembrane absorption and transport of of fluoride by tea plant roots [D]. Hefei: Anhui Agricultural University, 2020.
[24] Ruan J Y, Ma L F, Shi Y Z, et al.The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.)[J]. Annals of Botany, 2004, 93(1): 97-105.
[25] Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant Soil, 2016, 402(1): 179-190.
[26] Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)[J]. Phytochemistry, 2004, 65(20): 2775-2780.
[27] Nagata T, Hayatsu M.Aluminium kinetics in the tea plant using 27Al and 19F NMR[J]. Phytochemistry, 1993, 32(4): 771-775.
[28] Cai H M, Peng C Y, Chen J, et al.X-ray photoelectron spectroscopy surface analysis of fluoride stress in tea (Camellia sinensis (L.) O. Kuntze) leaves[J]. Journal of Fluorine Chemistry, 2014, 158: 11-15.
[29] Luo J L, Ni D J, He C, et al.Influence of exogenous calcium on the physiological, biochemical, phytochemical and ionic homeostasis of tea plants (Camellia sinensis (L.) O. Kuntze) subjected to fluorine stress[J]. Plant Growth Regulation, 2019, 87: 455-465.
[30] Zhang X C, Gao H J, Yang T Y, et al.Anion channel inhibitor NNPB-inhibited fluoride accumulation in tea plant (Camellia sinensis) is related to the regulation of Ca2+, CaM and depolarization of plasma membrane potential[J]. International Journal of Molecular Sciences, 2016, 1(17): 57. doi: org/10.3390/ijms17010057.
[31] Zhang X C, Gao J H, Zhang Z Z, et al.Influences of different ion channel inhibitors on the absorption of fluoride in tea plants (Camellia sinesis L.)[J]. Plant Growth Regulation, 2013, 69(1): 99-106.
[32] Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS[J]. Journal of the Science of Food Agriculture, 2016, 96(12): 4224-4230.
[33] Zhang L, Li Q, Ma L F, et al.Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)[J]. Plant Soil, 2013, 366(1): 659-669.
[34] Pottosin I, Velarde-Buendía A M, Bose J, et al. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots[J]. Journal of Experimental Botany, 2014, 65(9): 2463-2472.
[35] 唐茜, 赵先明, 杜晓, 等. 氟对茶树生长,叶片生理生化指标与茶叶品质的影响[J]. 植物营养与肥料学报, 2011, 17(1): 186-194.
Tang Q, Zhao X M, Du X, et al.Effects of fluorine stress on growth, physiological-biochemical characteristics and quality of tea leaves[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 186-194.
[36] 李丽霞, 杜晓, 何春雷. 水培茶苗对氟的吸收累积特性[J]. 四川农业大学学报, 2008, 26(1): 62-66, 78.
Li L X, Du X, He C L.Absorption and accumulation characteristics of fluorine in nutrient liquid cultured tea plant[J]. Journal of Sichuan Agricultural University, 2008, 26(1): 62-66, 78.
[37] Chen Y Z, Wang S L, Nan Z R, et al.Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem[J]. J Environmental Experimental Botany, 2017, 134: 54-61.
[38] Jha S K, Nayak A K, Sharma Y K.Response of spinach (Spinacea oleracea) to the added fluoride in an alkaline soil[J]. Food and Chemical Toxicology, 2008, 46(9): 2968-2971.
[39] Takmaz-Nisaneiouglu S, Davison A W.Effects of aluminium on fluoride uptake by plants[J]. New Phytologist, 1988, 109: 149-155.
[40] 周丽丽, 高必达, 宋奎. 不同植物对KF的剂量反应及其伤害阈值和致死浓度[J]. 中国农学通报, 2015, 31(14): 164-170.
Zhou L L, Gao B D, Song K.Dose-response of different plants on potassium fluoride and acute injury thresholds and lethal concentrations[J]. Chinese Agricultural Science Bulletin, 2015, 31(14): 164-170.
[41] 高慧敏. 茶多糖对氟离子的吸附特性研究[D]. 武汉: 华中农业大学, 2019.
Gao H M.Study on the absorption characteristics of tea polysaccharides on fluoride [D]. Wuhan: Huazhong Agricultural University, 2019.
[42] 刘思怡, 朱晓静, 房峰祥, 等. 茶树叶片氟亚细胞分布及其与细胞壁结合特性的研究[J]. 茶叶科学, 2018, 38(3): 305-312.
Liu S Y, Zhu X J, Fang F X, et al.Fluorine subcellular distribution and its combining characteristics with cell wall in tea leaves (Camellia sinensis)[J]. Journal of Tea Science, 2018, 38(3): 305-312.
[43] Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319.
[44] Luo J L, Ni D J, Li C L, et al.The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions[J]. Environmental Pollution, 2021, 270: 116283.
[45] Luo J L, Hu K, Qu F F, et al.Metabolomics analysis reveals major differential metabolites and metabolic alterations in tea plant leaves(Camellia sinensis L.) under different fluorine conditions[J]. Journal of Plant Growth Regulation, 2020(3): 1-13.
[46] 春晓亚. 氟在茶树新梢的分布特性及与多糖的结合方式初探[D]. 武汉: 华中农业大学, 2011.
Chun X Y.Study on distribution of fluorine in tea shoots and the way of combination with polysaccharides [D]. Wuhan: Huazhong Agricultural University, 2011.
[47] 钟秋生, 林郑和, 郝志龙, 等. 氟铝互作对茶树叶片叶绿素荧光特性的影响[J]. 茶叶科学, 2019, 39(5): 537-546.
Zhong Q S, Lin Z H, Hao Z L, et al.Effect of fluoride and aluminum interaction on the chlorophyll fluorescence characteristics of tea leaves[J]. Journal of Tea Science, 2019, 39(5): 537-546.
[48] Peng C Y, Xu X F, Zhu H Y, et al.Metabolics and ionomics responses of tea leaves (Camellia sinensis (L.) O. Kuntze) to fluoride stress[J]. Plant Physiology and Biochemistry, 2021 158: 65-75.
[49] Li C L, Ni D J.Effect of fluoride on chemical constituents of tea leaves[J]. Fluoride, 2009, 42(3): 195-202.
[50] 卢莉, 刘金仙, 程曦, 等. 氟铝交互处理对茶叶主要化学成分的影响[J]. 热带作物学报, 2017, 38(10): 1956-1962.
Lu L, Liu J X, Cheng X, et al.Effect of Al and F interaction on the main chemical components in tea leaves[J]. Chinese Journal of Tropical Crops, 2017, 38(10): 1956-1962.
[51] 王小平, 刘鹏, 罗虹, 等. 铝氟交互处理对茶树生理特性的影响[J]. 园艺学报, 2009, 36(9): 1359-1364.
Wang X P, Liu P, Luo H, et al.Effect of Al and F interaction on physiological characteristics of tea plant[J]. Acta Horticulture Sinica, 2009, 36(9): 1359-1364.
[52] 马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012.
Ma S C.Effect of aluminum on uptake, distribution and accumulation of fluorine in tea plants and its mechanism [D]. Hangzhou: Zhejiang University, 2012.
[53] 王丽霞. 茶树对氟的富集及其生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014.
Wang L X.Fluoride accumulation in tea plant and its physiological response mechanism [D]. Yangling: Northwest A&F University, 2014.
[54] 杨贤强, 王岳飞, 陈留记, 等. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003.
Yang X Q, Wang Y F, Chen L J, et al.Tea polyphenol chemistry [M]. Shanghai: Shanghai Science and Technology Press, 2003.
[55] 勾晓华, 王勋陵, 陈发虎. 氟化氢熏气和喷施防护剂对小麦应激乙烯产生的影响[J]. 应用与环境生物学报, 2000, 6(2): 117-120.
Gou X H, Wang X L, Chen F H.Effect of HF fumigation and spraying protective agents on stress ethylene production in wheat[J]. Chinses Journal Applied and Environmental Biology, 2000, 6(2): 117-120.
[56] 孟范平, 李桂芳, 吴方正. 氟害大豆超氧化物歧化酶活性与叶绿素含量及叶片脱落的关系[J]. 生态与农村环境学报, 2002, 18(2): 34-38.
Meng F P, Li G F, Wu F Z.Relationship between SOD activity and chlorophyll content and abnormal defoliation of soybean (Glycine max) leaves exposed to airborne fluoride[J]. Rural Eco-environment, 2002, 18(2): 34-38.
[57] Li C, Zheng Y, Zhou J, et al.Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum, 2011, 55(3): 563-566.
[58] 董阳阳. 氟处理对茶树叶片光合系统、活性氧代谢及超微结构的影响[D]. 合肥: 安徽农业大学, 2015.
Dong Y Y.Effect of F supply on photosynthesis, reactive oxygen metabolism and ultra-structure of tea plant (Camellia sinensis) leaves [D]. Hefei: Anhui Agricultural University, 2015.
[59] 李春雷. 氟对茶树抗坏血酸-谷胱甘肽循环系统的影响[J]. 江苏农业学报, 2016, 32(5): 1018-1022.
Li C L.ASA-GSH cycle in tea plant exposed to fluoride application[J]. Jiangsu Journal of Agricultural Science, 2016, 32(5): 1018-1022.
[60] 黄鑫, 宋晓维, 陈玉琼. 茶树吸收富集氟的机制研究进展[J]. 茶叶科学, 2016, 36(6): 551-556.
Huang X, Song X W, Chen Y Q.Advances in fluorine absorption and accumulation mechanisms in tea plant[J]. Journal of Tea Science, 2016, 36(6): 551-556.
[61] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011.
Li C L.Study on the Effect and mechanism of fluoride in the physiology and biochemistry of tea seedlings [D]. Wuhan: Huazhong Agricultural University, 2011.
[62] 孟范平, 吴方正. HF对梅树超氧化物歧化酶和纤维素酶活性的影响[J]. 生态学杂志, 1997, 16(5): 28-31.
Meng F C, Wu F Z.Effect of HF on the activities of superoxide dismutase and cellolase in plum (Prunus mume) leaves[J]. Chinese Journal of Ecology, 1997, 16(5): 28-31.
[63] 徐丽珊. 大气氟化物对植物影响的研究进展[J]. 浙江师范大学学报, 2004, 27(1): 66-71.
Xu L S.Effects of atmospheric fluoride pollution on plant[J]. Journal of Zhejiang Normal University (Natural Science Edition), 2004, 27(1): 66-71.
[64] Yang P D, Liu Z, Zhao Y, et al.Comparative study of vegetative and reproductive growth of different tea varieties response to different fluoride concentrations stress[J]. Plant Physiology and Biochemistry, 2020, 154: 419-428.
[65] 申秀英, 吴方正. 氟化物对桑叶氮代谢某些影响的研究[J]. 农业环境科学学报, 1991, 10(5): 194-197, 211.
Shen X Y, Wu F Z.Effect of fluoride on the metabolism of nitrogen in the leaves of mulberry[J]. Agro-environmental Protection, 1991, 10(5): 194-197, 211.
[66] Yu M H, Miller G W. Effect of fluoride on the respiration of leaves from higher plants [J]. Plant Cell Physiology1967(3): 483-493.
[67] Miller J E, Miller G W.Effects of fluoride on mitochondrial activity in higher plants[J]. Physiologia Plantarum, 2010, 32(2): 115-121.
[68] 杨晓, 张月华, 余志, 等. 氟对茶树生理的影响及茶树耐氟机制研究进展[J]. 华中农业大学学报, 2015, 34(3): 142-146.
Yang X, Zhang Y H, Yu Z, et al.Physiological effects of fluoride on tea plant and fluoride-resistant mechanism of tea[J]. Journal of Huazhong Agricultural University, 2015, 34(3): 142-146.
[69] Niu H L, Peng C Y, Zhu X D, et al.Positron-emitting tracer imaging of fluoride transport and distribution in tea plant[J]. Journal of the Science of Food and Agriculture, 2020, 100(8): 3554-3559.
[70] Wang Y H, Chang P P, Pan J T, et al.Effect of aluminium and fluoride on R2R3-MYB transcription factor characterization and expression in Camellia sinensis[J]. Biologia Plantarum, 2019, 63(1): 298-307.
[71] Pan J T, Chang P P, Ye X L, et al.Transcriptome-wide analysis of MADS-box family genes involved in aluminum and fluoride assimilation in Camellia sinensis[J]. Plant Biotechnology, 2018, 35(4): 313-324.
[72] Banerjee A, Roychoudhury A.Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis[J]. Plant Physiology and Biochemistry, 2019, 145: 164-173.
[73] Stockbridge R B, Lim H H, Otten R, et al.Fluoride resistance and transport by riboswitch-controlled CLC antiporters[J]. Proceedings of the National Academy of Sciences of the United States of America Elife, 2012, 109(38): 15289-15294.
[74] Tausta S L, Berbasova T, Peverelli M, et al.The fluoride transporter Fluoride Exporter (FEX) is the major mechanism of tolerance to fluoride toxicity in plants[J]. Plant Physiology, 2021, 186(2): 1143-1158.
[75] 陈瑞鸿, 梁月荣, 陆建良, 等. 茶树对氟富集作用的研究[J]. 茶叶, 2002, 28(4): 187-190.
Chen R H, Liang Y R, Lu J L.Studies on fluorine enrichment in tea plant (Camellia sinensis)[J]. Journal of Tea, 2002, 28(4): 187-190.
[76] 石元值, 王新超, 方丽, 等. 四个茶树品种的氟吸收累积特性比较研究[J]. 植物营养与肥料学报, 2013, 19(2): 396-403.
Shi Y Z, Wang X C, Fang L, et al.Characteristics of fluorine absorption and accumulation of four different tea tree varieties[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 396-403.
[77] 黎南华. 不同生态环境的茶叶氟含量浅析[J]. 福建茶叶, 1994(2): 21-23.
Li N H.Analysis on the fluoride content of tea in different ecological environments[J]. Tea in Fujian, 1994(2): 21-23.
[78] 包小村. 茶叶最新降氟科技成果[J]. 湖南农业, 2020, 510(6): 17.
Bao X C.The latest scientific and technological achievements of tea defluoridation[J]. Hunan Agriculture, 2020, 510(6): 17.
[79] 于静怡, 王军, 于晓峰. 基于计算机技术下氟铝交互化学处理对茶叶化学成分的影响分析[J]. 福建茶叶, 2018, 40(4): 10.
Yu J Y, Wang J, Yu X F.Analysis of the influence of fluorine-aluminum interactive chemical treatment on the chemical composition of tea based on computer technology[J]. Tea in Fujian, 2018, 40(4): 10.
[80] 张永利, 廖万有, 王烨军, 等. 添加含钙化合物对茶园土壤pH及有效氟的影响[J]. 中国农学通报, 2013, 29(1): 132-137.
Zhang Y L, Liao W Y, Wang Y J, et al.Influence of addition of calcium compounds on pH and available fluoride content in tea garden soil[J]. Chinese Agricultural Science Bulletin, 2013, 29(1):132-137.
[81] 王凌霞, 胡红青, 闵艳林, 等. 茶园土壤水溶性氟含量的模拟调控[J]. 环境科学学报, 2011, 31(7): 1517-1525.
Wang L X, Hu H Q, Min Y L, et al.Simulated control of water-soluble fluoride content in tea garden soils[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1517-1525.
[82] Gao H J, Zhang Z Z, Wan X C.Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants[J]. Environmental Geochemistry and Health, 2012, 34(5): 551-562.
[83] Huang C Y, Zhang H, Zeng W H, et al.Enhanced fluoride adsorption of aluminum humate and its resistance on fluoride accumulation in tea leaves[J]. Environmental Technology, 2020,41(3): 329-338.
[84] 陈玉琼, 倪德江, 春晓娅, 等. 不同杀青方式对青砖茶原料氟含量的影响[J]. 湖北农业科学, 2011, 50(6): 1193-1195.
Chen Y Q, Ni D J, Chun X Y, et al.Effects of different fixation ways on the fluoride contents of Qingzhuan tea material[J]. Hubei Agricultural Sciences, 2011, 50(6): 1193-1195.
[85] 春晓亚, 陈玉琼, 倪德江, 等. 水洗对砖茶揉捻叶氟含量及主要品质成分的影响[J]. 湖北农业科学, 2011, 50(12): 2453-2455.
Chun X Y, Chen Y Q, Ni D J, et al.Effects of rolling tea leaves with washing water on fluorine and quality components[J]. Hubei Agricultural Sciences, 2011, 50(12): 2453-2455.
[86] 李国林, 梅树华, 齐桂年. 采用微生物制剂处理的低氟砖茶生产工艺: CN101427716[P].2009-05-13.
Li G L, Mei S H, Qi G N. Production process of low-fluoride brick tea treated with microbial preparation: CN101427716 [P].2009-05-13.
[87] 李兰英, 王云, 尧渝, 等. 低氟砖茶加工工艺及品质研究[J]. 中国农学通报, 2017, 33(15): 133-138.
Li L Y, Wang Y, Rao Y, et al.Processing technology and quality of low-fluoride brick-tea[J]. Chinese Agricultural Science Bulletin, 2017, 33(15): 133-138.
[88] 纪晓明, 李三原, 周兴长. 以拼配技术降低茯砖茶氟含量的生产方法: CN101731379A[P].2010-06-16.
Ji X M, Li S Y, Zhou X Z. Production method for reducing fluoride content of Fuzhuan tea by blending technology: CN101731379A [P].2010-06-16.
Outlines

/