The accurate classification of different grades of tea buds is very important for the development of the famous tea industry. The use of traditional sensory evaluation methods for sorting makes the results subjective. In this research, a data set was established after tea leaf images were collected, and a new network model, GA-CapsNet, was proposed by combining the ghost attention bottleneck and capsule network. The model was trained by the method of growing knowledge distillation based on the linear decay scaling coefficient, while migrating the parameter matrix of teacher model, the student model was adaptively reduced with iteration. The experimental result shows that, compared with other similar algorithms, the proposed method had excellent classification performance on small-scale data sets. The accuracy, recall and F1-score were 94.97%, 95.51% and 95.24%, respectively. Here, a GA-CapsNet model based on machine vision and deep learning technology was established, which provided a new idea for solving the tea leaf classification problem.
[1] 石亚丽, 朱荫, 马婉君, 等. 名优炒青绿茶挥发性成分研究进展[J]. 茶叶科学, 2021, 41(3): 285-301.
Shi Y L, Zhu Y, Ma W J, et al.Research progress on the volatile compounds of premium roasted green tea[J]. Journal of Tea Science, 2021, 41(3): 285-301.
[2] 刘元生, 刘方, 陈祖拥, 等. 贵州富锌硒茶产区地质环境条件与土壤元素地球化学特征[J]. 贵州大学学报(自然科学版), 2021, 38(5): 25-32.
Liu Y S, Liu F, Chen Z Y, et al.Geological environment conditions and geochemical characteristics of soil elements in zinc-selenium-rich tea producing areas in Guizhou[J]. Journal of Guizhou University (Natural Science), 2021, 38(5): 25-32.
[3] 陈青, 杨云, 王海燕. 贵州茶叶中微量锗含量测定[J]. 贵州大学学报(自然科学版), 2002, 19(2): 141-144.
Chen Q, Yang Y, Wang H Y.Determination of trace germanium content in Guizhou tea[J]. Journal of Guizhou University (Natural Science), 2002, 19(2): 141-144.
[4] 郭建军, 周艺, 王小英, 等. 贵州不同产区代表绿茶的品质特征及香气组分分析[J]. 食品工业科技, 2021, 42(5): 78-84.
Guo J J, Zhou Y, Wang X Y, et al.Analysis of quality features and aroma components in Guizhou representative green tea[J]. Food Industry Technology, 2021, 42(5): 78-84.
[5] 叶江华, 罗盛财, 张奇, 等. 武夷山不同茶园茶树茶青品质的差异[J]. 福建农林大学学报(自然科学版), 2017, 46(5): 495-501.
Ye J H, Luo S C, Zhang Q, et al.Difference of fresh tea leaf quality from different tea plantations in Wuyishan[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(5): 495-501.
[6] 吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589.
Wu X M, Zhang F G, Lv J T.Research on recognition of tea tender leaf based on image color information[J]. Journal of Tea Science, 2013, 33(6): 584-589
[7] 张怡, 赵珠蒙, 王校常, 等. 基于ResNet卷积神经网络的绿茶种类识别模型构建[J]. 茶叶科学, 2021, 41(2): 261-271.
Zhang Y, Zhao Z M, Wang X C, et al.Construction of green tea recognition model based on ResNet convolutional neural network[J]. Journal of Tea Science, 2021, 41(2): 261-271.
[8] 汪建, 杜世平. 基于颜色和形状的茶叶计算机识别研究[J]. 茶叶科学, 2008, 28(6): 420-424.
Wang J, Du S P.Identification investigation of tea based on HSI color space and figure[J]. Journal of Tea Science, 2008, 28(6): 420-424.
[9] 毛腾跃, 黄印, 文晓国, 等. 基于多特征与多分类器的鲜茶叶分类研究[J]. 中国农机化学报, 2020, 41(12): 75-83.
Mao T Y, Huang Y, Wen X G, et al.Research on classification of fresh tea based on multiple features and multiple classifiers[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 75-83.
[10] 张晴晴. 基于卷积神经网络的茶树嫩芽识别研究[D]. 合肥: 安徽农业大学, 2020.
Zhang Q Q.Research on the identification of tea tree sprouts based on convolutional neural network [D]. Hefei: Anhui Agricultural University, 2020.
[11] 张蕴. 茶叶嫩芽图像识别方法研究[D]. 合肥: 安徽农业大学, 2020.
Zhang Y.Research on image recognition method of tea sprouts [D]. Hefei: Anhui Agricultural University, 2020.
[12] Xu M, Wang J, Gu S.Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy[J]. Journal of Food Engineering, 2019, 241: 10-17.
[13] Sabour S, Frosst N, Hinton G E.Dynamic routing between capsules[C]//Luxburg U V, Guyon I, Bengio, et al. Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 3859-3869.
[14] Hinton G E, Sabour S, Frosst N. Matrix capsules with em routing [C/OL]//ICLR Organizing Committee. ICLR2018 Conference Blind Submission,2018[2022-11-26].
[15] Wang Q, Wu B, Zhu P, et al.ECA-Net: efficient channel attention for deep convolutional neural networks[J]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11531-11539.
[16] 魏铖磊, 南新元, 李成荣, 等. 一种具有多尺度感受视野注意力机制的生活垃圾单阶段目标检测方法[J]. 环境工程, 2022, 40(1): 175-183.
Wei C L, Nan X Y, Li C R, et al.A single-stage object detection method for domestic garbage based on multi-scale receptive filed attention mechanism[J]. Environmental Engineering: 2022, 40(1): 175-183.
[17] 徐岩, 李晓振, 吴作宏, 等. 基于残差注意力网络的马铃薯叶部病害识别[J]. 山东科技大学学报(自然科学版), 2021, 40(2): 76-83.
Xu Y, Li X Z, Wu Z H, et al.Potato leaf disease recognitition via residual atention network[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(2): 76-83.
[18] Zhang S, Zhang S, Zhang C, et al.Cucumber leaf disease identification with global pooling dilated convolutional neural network[J]. Computers and Electronics in Agriculture, 2019, 162: 442-430.
[19] Toraman S, Alakus T B, Turkoglu I.Convolutional capsnet: a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks[J]. Chaos, Solitons & Fractals, 2020, 140: 110122. doi: 10.1016/j.chaos.2020.110122.
[20] Misra D.Mish: a self regularized non-monotonic activation function[J]. BMVC 2020, 2020. doi: 10.48550/arXiv.1908.
08681.
[21] Hu G, Yang X, Zhang Y, et al.Identification of tea leaf diseases by using an improved deep convolutional neural network[J]. Sustainable Computing: Informatics and Systems, 2019, 24: 100353. doi: 10.1016/j.suscom.2019.100353.