[1] Ming T, Bartholomew B.Theaceae[J]. Flora China, 2007, 12: 366-478.
[2] Zhao M, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. New Phytol, 2020, 226(2): 362-372.
[3] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Biochemistry of tea: the third edition [M]. 3rd ed. Beijing: China Agriculture press, 2003.
[4] Zhao M, Yu Y, Sun L, et al.GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein[J]. Nature Communications, 2021, 12(1): 2114.doi: 10.1038/s41467-021-22297-8.
[5] Xiong L G, Chen Y J, Tong J W, et al.Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans[J]. Redox Biology, 2018, 14: 305-315.
[6] Yuan H, Li Y, Ling F, et al.The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats[J]. Aging cell, 2020, 19(9): e13199. doi: 10.1111/acel.13199.
[7] Lwxa B, Shang C, Tsza B, et al.Green tea derivative epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo[J]. Free Radical Biology and Medicine, 2020, 161: 175-186.
[8] Zhang Z, Zhang X, Bi K, et al.Potential protective mechanisms of green tea polyphenol EGCG against COVID-19[J]. Trends in Food Science & Technology, 2021, 114: 11-24.
[9] Zhao J, Blayney A, Liu X, et al.EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction[J]. Nature Communications, 2021, 12(1): 986. doi: 10.1038/s41467-021-21258-5.
[10] Bernier L P, York E M, Kamyabi A, et al.Microglial metabolic flexibility supports immune surveillance of the brain parenchyma[J]. Nat Commun, 2020, 11(1): 1559. doi: 10.1038/s41467-020-15267-z.
[11] Liu Z S, Cai H, Xue W, et al.G3BP1 promotes DNA binding and activation of cGAS[J]. Nat Immunol, 2019, 20(1): 18-28.
[12] Yang C S, Hong J.Prevention of chronic diseases by tea: possible mechanisms and human relevance[J]. Annual Review of Nutrition, 2013, 33: 161-181.
[13] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908.
Xia T, Gao L P.Research progress on biosynthesis pathway and regulation of flavonoids and catechins[J]. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908.
[14] Weisshaar B, Jenkins G I.Phenylpropanoid biosynthesis and its regulation[J]. Current Opinion in Plant Biology, 1998, 1(3): 251-257.
[15] Furukawa T, Eshima A, Koiya M, et al.Coordinate expression of genes involved in catechin biosynthesis in Polygonum hydropiper cells[J]. Plant Cell Reports, 2002, 21(4): 385-389.
[16] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320.
Xia T, Gao L P, Liu Y J, et al.Advances in biosynthesis and hydrolysis of catechins from tea tree[J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320.
[17] 宛晓春. 茶树次生代谢[M]. 北京: 科学出版社, 2015.
Wan X C.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015.
[18] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103.
Lu J L, Lin C, Luo Y Y, et al.Advances in cloning of important functional genes from Camellia sinensis[J]. Journal of Tea Science, 2007, 27(2): 95-103.
[19] Stafford H A.Flavonoid metabolism pathway to proanthocyanindins (condensed tannins), flavan-3-ols, and unsubstituted flavans [M]. New York: CRC Press, 1990.
[20] Stafford H A, Lester H H.The conversion of (L)-dihydromyricetin to its flavan-3, 4-diol (leucodelphinidin) and to (L)-gallocatechin by reductase extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii[J]. Plant Physiology, 1985, 78(4): 791-794.
[21] Punyasiri P, Abeysinghe I, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry & Biophysics, 2004, 431(1): 22-30.
[22] Niemetz R, Gross G G.Enzymology of gallotannin and ellagitannin biosynthesis[J]. Phytochemistry, 2005, 66(17): 2001-2011.
[23] Gross G G.From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds[J]. Phytochemistry, 2008, 69(18): 3018-3031.
[24] Liu Y, Gao L, Liu L, et al.Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis)[J]. Journal of Biological Chemistry, 2012, 287(53): 44406-44417.
[25] Zhong K, Zhao S Y, Jönsson L J, et al.Enzymatic conversion of epigallocatechin gallate to epigallocatechin with an inducible hydrolase from Aspergillus niger[J]. Biocatalysis, 2009, 26(4): 306-312.
[26] Wei C, Hua Y, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci U S A, 2018, 115(18): E4151-E4158.
[27] Luo Y, Yu S, Li J, et al.Molecular characterization of WRKY transcription factors that act as negative regulators of O-Methylated catechin biosynthesis in tea plants (Camellia sinensis L.)[J]. J Agric Food Chem, 2018, 66(43): 11234-11243.
[28] Wang P, Zhang L, Jiang X, et al.Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis[J]. Planta, 2018, 247(1): 139-154.
[29] 牛义岭, 姜秀明. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8): 2050-2059.
Niu Y L, Jiang X M.Research progress of plant transcription factor MYB gene family[J]. Molecular Plant Breeding, 2016, 14(8): 2050-2059.
[30] Martin C, Paz-Ares J.MYB transcription factors in plants[J]. Trends in Genetics, 1997, 13(2): 67-73.
[31] Verdonk J C, Haring M A, Tunen A J, et al.ODORANT1 regulates fragrance biosynthesis in Petunia Flowers[J]. Plant Cell, 2005, 17(5): 1612-1624.
[32] Bomal C, Bedon F, Caron S, et al.Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis[J]. Journal of Experimental Botany, 2008, 59(14): 3925-3939.
[33] Schaart J G, Dubos C, Romero De La Fuente I, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry[J]. The New Phytologist, 2013, 197(2): 454-467.
[34] An X H, Tian Y, Chen K Q, et al.MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples[J]. Plant Cell Physiol, 2015, 56(4): 650-662.
[35] Tian J, Zhang J, Han Z Y, et al.McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus Crabapple[J]. Scientific Reports, 2017, 7(1): 43715. doi: 10.1038/srep43715.
[36] James A M, Ma D, Mellway R, et al.Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure[J]. Plant Physiology, 2017, 174(1): 154-171.
[37] Wang N, Qu C, Jiang S, et al.The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low temperature conditions in red-fleshed apple[J]. The Plant J, 2018, 96(1): 39-55.
[38] Xu W, Dubos C, Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science, 2015, 20(3): 176-185.
[39] Terrier N, Torregrosa L, Ageorges A, et al.Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J]. Plant Physiol, 2009, 149(2): 1028-1041.
[40] Gesell A, Yoshida K, Tran L T, et al.Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134[J]. Planta, 2014, 240(3): 497-511.
[41] Mellway R D, Tran L T, Prouse M B et al. The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar[J]. Plant Physiology, 2009, 150(2): 924-941.
[42] Stracke R, Werber M, Weisshaar B.The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol, 2001, 4(5): 447-456.
[43] Liu R, Wang Y, Tang S, et al.Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation[J]. Sci Rep, 2021, 11(1): 10764. doi: 10.21203/rs.3.rs-148784/v1.
[44] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method[J]. Methods, 2001, 25(4): 402-408.
[45] Chen C, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
[46] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10): 573-581.
[47] Stracke R, Ishihara H, Huep G, et al.Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J, 2007, 50(4): 660-677.
[48] Gonzalez A, Zhao M, Leavitt J M, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J, 2008, 53(5): 814-827.
[49] Lepiniec L, Debeaujon I, Routaboul J M, et al.Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol, 2006, 57: 405-430.
[50] Zhong R, Lee C, Zhou J, et al.A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant Cell, 2008, 20(10): 2763-2782.
[51] Zhou J, Lee C, Zhong R, et al.MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. Plant Cell, 2009, 21(1): 248-266.
[52] Sun B, Zhu Z, Cao P, et al.Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1[J]. Sci Rep, 2016, 6: 32534. doi: 10.1038/srep32534.
[53] Wang X C, Wu J, Guan M L, et al.Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis[J]. Plant J, 2020, 101(3): 637-652.
[54] Ma D, Constabel C P.MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends Plant Sci, 2019, 24(3): 275-289.
[55] Agarwal M, Hao Y, Kapoor A, et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645.
[56] Kang Y H, Kirik V, Hulskamp M, et al.The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis[J]. Plant Cell, 2009, 21(4): 1080-1094.
[57] Jiang X, Huang K, Zheng G, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis[J]. Plant Sci, 2018, 270: 209-220.
[58] Wang P, Ma G, Zhang L, et al.A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis)[J]. J Agric Food Chem, 2019, 67(5): 1418-1428.