Welcome to Journal of Tea Science,Today is
Research Paper

The Ultrastructure and Molecular Mechanism of Albino Pericarp in Tea Plants

  • TANG Rongjin ,
  • LIU Haoran ,
  • LIU Dingding ,
  • ZHANG Chenyu ,
  • GONG Yang ,
  • YE Yuanyuan ,
  • CHEN Jiedan ,
  • CHEN Liang ,
  • MA Chunlei
Expand
  • 1. Tea Research Institute of the Chinese Academy of Agricultural Science/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agriculture Science, Beijing 100081, China

Received date: 2022-09-29

  Revised date: 2022-11-10

  Online published: 2023-01-04

Abstract

Albino pericarp is a rare mutation in tea plants, which has not been reported yet. Recently, among the albino tea mutants preserved in the China National Germplasm Tea Repository, a precious resource ‘Yunbai 1’ with albino pericarp were found. The ultrastructure of the albino pericarp of ‘Yunbai 1’ was compared with the control ‘Zhongcha 129’. The results indicate that compared with the green pericarp of ‘Zhongcha 129’, the plastid structure in albino pericarp cells of ‘Yunbai 1’ was seriously damaged and could not further develop into chloroplasts. Transcriptomic analysis shows that, the differentially expressed genes (DEGs) in pericarps of two cultivars were enriched in the pathways of photosynthesis, carbohydrate metabolism, amino acid metabolism, indicating that the defective chloroplasts in albino pericarp disrupted photosynthetic carbon metabolism and nitrogen metabolism. In addition, numerous DEGs of seeds between two cultivars were enriched in the pathways of carbohydrate metabolism and fatty acid degradation, revealing that the carbon allocation strategy in the seeds of ‘Yunbai 1’ was different from ‘Zhongcha 129’, which might be helpful for maintaining the normal growth and development of seeds. The related results could provide important reference for further study on the albinism of tea fruits.

Key words: tea plant; pericarp; albino; RNA-Seq

Cite this article

TANG Rongjin , LIU Haoran , LIU Dingding , ZHANG Chenyu , GONG Yang , YE Yuanyuan , CHEN Jiedan , CHEN Liang , MA Chunlei . The Ultrastructure and Molecular Mechanism of Albino Pericarp in Tea Plants[J]. Journal of Tea Science, 2022 , 42(6) : 779 -790 . DOI: 10.13305/j.cnki.jts.2022.06.009

References

[1] 刘丁丁, 梅菊芬, 王君雅, 等. 茶树白化突变研究进展[J]. 中国茶叶, 2020, 42(4): 24-35.
Liu D D, Mei J F, Wang J Y, et al.Research progress on albino trait of tea plant[J]. China Tea. 2020, 42(4): 24-35.
[2] 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究[D]. 杭州: 浙江大学, 2015.
Li N N.Physiological, biochemical characteristics and molecular albinism of the albino tea (Camellia sinensis) plant[D]. Hangzhou: Zhejiang University, 2015.
[3] Wu Q J, Chen Z D, Sun W J, et al.De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan[J]. Frontiers in Plant Science, 2016, 7: 332. doi: 10.3389/fpls.2016.00332.
[4] Ma Q P, Li H, Zou Z W, et al.Transcriptomic analyses identify albino-associated genes of a novel albino tea germplasm ‘Huabai 1’[J]. Horticulture Research, 2018, 5: 54. doi: 10.1038/s41438-018-0053-y.
[5] Li C F, Ma J Q, Huang D J, et al.Comprehensive dissection of metabolic changes in albino and green tea cultivars[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 2040-2048.
[6] Zhang Q F, Liu M Y, Ruan J Y.Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves[J]. BMC Plant Biology, 2017, 17: 64. doi: 10.1186/s12870-017-1012-8.
[7] 杨颜榕, 黄纤纤, 赵亚男, 等. 水稻叶色基因克隆与分子机制研究进展[J]. 植物遗传资源学报, 2020, 21(4): 794-803.
Yang Y R, Huang Q Q, Zhao Y N, et al.Advances on gene isolation and molecular mechanism of rice leaf color genes[J]. Journal of Plant Genetic Resources, 2020, 21(4): 794-803.
[8] 付修义, 殷鹏飞, 季生辉, 等. 利用转录组测序鉴定玉米白色籽粒突变基因PDS[J]. 中国农业大学学报, 2019, 24(7): 1-9.
Fu X Y, Yin P F, Ji S H, et al.Identification of PDS for white kernels in maize via RNA-seq[J]. Journal of China Agricultural University, 2019, 24(7): 1-9.
[9] 张国荣. 白化颖壳大麦的遗传、生长发育及生理生化特性研究[D]. 杭州: 浙江大学, 2001.
Zhang G R.Studies on the heredity, growth and development, physio-biochemistry of albino-lemma barley[D]. Hangzhou: Zhejiang University, 2001.
[10] 江莹芬, 吴新杰, 费维新, 等. 甘蓝型油菜角果特异白化种质的遗传和生理特性[J]. 植物遗传资源学报, 2020, 21(1): 113-120.
Jiang Y F, Wu X J, Fei W X, et al.Genetic and physiological characteristics of Brassica napus germplasm resources showing albino silique[J]. Journal of Plant Genetic Resources, 2020, 21(1): 113-120.
[11] 闫龙祥, 杨丽梅, 庄木, 等. 甘蓝白化种荚基因alb1的遗传与转录组分析[J]. 中国蔬菜, 2020(4): 36-40.
Yan L X, Yang L M, Zhuang M, et al.Inheritance and transcriptome analysis of alb1 gene in albino pod mutant of cabbage[J]. China Vegetables, 2020(4): 36-40.
[12] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026.
[13] Qin G J, Gu H Y, Ma L G, et al.Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. Cell Research, 2007, 17: 471-482.
[14] Hao X Y, Zhang W F, Liu Y, et al.Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant[J]. Plant Physiology and Biochemistry, 2020, 146: 392-402.
[15] 程红焱, 宋松泉. 种子的贮油细胞器——油体及其蛋白[J]. 植物学通报, 2006, 23(4): 418-430.
Cheng H Y, Song S Q.Seed lipid storage organelles: oil bodys and their proteins[J]. Chinese Bulletin of Botany, 2006, 23(4): 418-430.
[16] Motohashi R, Nagata N, Ito T, et al.An essential role of a TatC homologue of a ΔpH-dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2001, 98(18): 10499-10504.
[17] Zhang H T, Li J J, Yoo J H, et al.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology, 2006, 62: 325-337.
[18] 许燕. 6个特色茶树品种(系)光合特性及叶绿体超微结构研究[D]. 雅安: 四川农业大学, 2016.
Xu Y.Study on photosynthetic traits and chloroplast ultrastructure of 6 tea characteristic varieties (lines)[D]. Ya′an: Sichuan Agriculture University, 2016.
[19] Lu M Q, Han J Y, Zhu B Y, et al.Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis)[J]. Planta, 2019, 249: 363-376.
[20] Yamashita H, Kambe Y, Ohshio M, et al.Integrated metabolome and transcriptome analyses reveal etiolation-induced metabolic changes leading to high amino acid contents in a light-sensitive Japanese albino tea cultivar[J]. Frontiers in Plant Science, 2021, 11: 2194. doi: 10.3389/fpls.2020.611140.
[21] Zhang Q F, Liu M Y, Ruan J Y.Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar[J]. Frontiers in Plant Science, 2017, 8: 291. doi: 10.3389/fpls.2017.00291.
[22] Pan X W, Cao P, Su X D, et al.Structural analysis and comparison of light-harvesting complexes Ⅰ and Ⅱ[J]. Biochimica et Biophysica Acta (BBA) Bioenergetics, 2020, 1861(4): 148038. doi: 10.1016/j.bbabio.2019.06.010.
[23] Mulo P, Medina M.Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications[J]. Photosynthesis Research, 2017, 134: 265-280.
[24] Lintala M, Allahverdiyeva Y, Kidron H, et al.Structural and functional characterization of ferredoxin-NADP+-oxidoreductase using knock-out mutants of Arabidopsis[J]. The Plant Journal, 2007, 49(6): 1041-1052.
[25] 梅杨, 李海蓝, 谢晋, 等. 核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)[J]. 植物生理学通讯, 2007, 43(2): 363-368.
Mei Y, Li H L, Xie J, et al.Ribulose-1,5-bisphosphate Carboxylase/oxygenase (Rubisco)[J]. Plant Physiology Communications, 2007, 43(2): 363-368.
[26] 卢倩, 弭晓菊, 崔继哲. 植物甘油醛-3-磷酸脱氢酶作用机制的研究进展[J]. 生物技术通报, 2013, 29(8): 1-6.
Lu Q, Mi X J, Cui J Z.Research advances on the mechanism of glyceraldehydes-3-phosphate dehydrogenase in plant[J]. Biotechnology Bulletin, 2013, 29(8): 1-6.
[27] 张洋, 刘爱忠. 蓖麻种子油脂累积与可溶性糖变化的关系[J]. 生物技术通报, 2016, 32(6): 120-129.
Zhang Y, Liu A Z.The Correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds[J]. Biotechnology Bulletin, 2016, 32(6): 120-129.
[28] 张凌云, 王小艺, 曹一博. 油茶果实糖含量及代谢相关酶活性与油脂积累关系分析[J]. 北京林业大学学报, 2013, 35(4): 55-60.
Zhang L Y, Wang X Y, Cao Y B.Soluble sugar content and key enzyme activity and the relationship between sugar metabolism and lipid accumulation in developing fruit of Camellia oleifera[J]. Journal of Beijing Forestry University, 2013, 35(4): 55-60.
[29] 陈婷. 油菜叶片和角果光合对其籽粒产量及品质的影响[D]. 杨凌: 西北农林科技大学, 2016.
Chen T.Influence of leaf and silique photosynthesis on seeds yield and seed soil quality of oilseed rape[D]. Yangling: Northwest A & F University, 2016.
[30] 李婷婷, 薛璟祺, 王顺利, 等. 植物非结构性碳水化合物代谢及体内转运研究进展[J]. 植物生理学报, 2018, 54(1): 25-35.
Li T T, Xue J Q, Wang S L, et al.Research advances in the metabolism and transport of non-structural carbohydrates in plants[J]. Plant Physiology Journal, 2018, 54(1): 25-35.
[31] Barratt D H P, Derbyshire P, Findlay K, et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 13124-13129.
[32] Kumar R, Mukherjee S, Ayele B T.Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review[J]. Biotechnology Advances, 2018, 36(4): 954-967.
[33] 张明方, 李志凌. 高等植物中与蔗糖代谢相关的酶[J]. 植物生理学通讯, 2002, 38(3): 289-295.
Zhang M F, Li Z L.Sucrose-metabolizing enzymes in higher plants[J]. Plant Physiology Communications, 2002, 38(3): 289-295.
[34] Nägele T, Henkel S, Hörmiller I, et al.Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism[J]. Plant Physiology, 2010, 153(1): 260-272.
Outlines

/