Welcome to Journal of Tea Science,Today is
Research Paper

Effects of Acidification on Mineral Transformation and Potassium Supply Capacity of Tea Garden Soils

  • MA Wanzhu ,
  • ZHU Kangying ,
  • ZHUO Zhiqing
Expand
  • 1. Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
    2. Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China

Received date: 2022-03-30

  Revised date: 2022-08-02

  Online published: 2023-03-01

Abstract

Acidification is a common phenomenon of tea garden soils. In order to understand the long-term effects of acidification on mineral components and potassium in tea garden soils, the red soil developed from granite was selected, and the forest land of the same soil type was used as the control. Through soil analysis and simulation experiments, the changes and differences of soil minerals and soil potassium forms caused by soil acidification were compared after 20 and 50 years of continuous planting of tea trees. The results show that the acidification of tea garden soils reduced the capacity of slow available potassium and potassium containing minerals such as mica and feldspar in sand and silt fractions, promoted the transformation from 2∶1 type (Illite) minerals to 1∶1 type minerals (Kaolinite) in clay fraction, and reduced the total potassium content of the soils. With the increase of soil acidity, the proportion of mineral bound form and non-exchangeable form K in the soils decreased gradually. While the proportion of water-soluble K increased gradually. After soil acidification, the potassium applied to the soils mainly existed in water-soluble and exchangeable forms with high activity. The proportion of K in non-exchangeable form was significantly reduced, and the buffering ability of soil to external source K was gradually reduced. The application of zeolite in acidic soils could enhance the buffering ability of the soils to potassium transformation and reduce the leaching loss risk of soil potassium. The results show that soil acidification in tea gardens could significantly reduce soil potassium, weaken soil potassium supply capacity and potassium buffering ability.

Cite this article

MA Wanzhu , ZHU Kangying , ZHUO Zhiqing . Effects of Acidification on Mineral Transformation and Potassium Supply Capacity of Tea Garden Soils[J]. Journal of Tea Science, 2023 , 43(1) : 17 -26 . DOI: 10.13305/j.cnki.jts.2023.01.002

References

[1] 贾宽宽, 舒英格, 张忠梁, 等. 基于CNKI数据库的茶园土壤酸化文献计量分析[J]. 中国农学通报, 2021, 37(20): 119-125.
Jia K K, Shu Y G, Zhang Z L, et al.Bibliometric analysis of soil acidification of tea garden based on CNKI database[J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 119-125.
[2] 杨文俪. 福建省安溪县茶园土壤酸化速率与改良技术[J]. 茶叶学报, 2021, 62(2): 89-93.
Yang W L.Ramedy for soil acidfication at tea plantation in Anxi, Fujian[J]. Acta Tea Sinica, 2021, 62(2): 89-93.
[3] 颜鹏, 韩文炎, 李鑫, 等. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 2020, 53(4): 795-813.
Yan P, Han W L, Li X, et al.Present situation and analysis of soil acidfication in Chinese tea garden[J]. Scientia Agricultura Sinica, 2020, 53(4): 795-813.
[4] 樊战辉, 唐小军, 郑丹, 等. 茶园土壤酸化成因及改良措施研究和展望[J]. 茶叶科学, 2020, 40(1): 15-25.
Fan Z H, Tang X J, Zheng D, et al.Study and prospect of soil acidification causes and improvement measures in tea plantation[J]. Journal of Tea Science, 2020, 40(1): 15-25.
[5] 杨向德, 石元值, 伊晓云, 等. 茶园土壤酸化研究现状和展望[J]. 茶叶学报, 2015, 56(4): 189-197.
Yang X D, Shi Y Z, Yi X Y, et al.Research progress and prospects on soil acidification at tea plantations[J]. Acta Tea Sinica, 2015, 56(4): 189-197.
[6] 谢会雅, 陈舜尧, 张阳, 等. 中国南方土壤酸化原因及土壤酸性改良技术研究进展[J]. 湖南农业科学, 2021(2): 104-107.
Xie H Y, Chen S Y, Zhang Y, et al.Research progress on causes of soil acidification & acid soil improvement technology in south China[J]. Hunan Agricultural Sciences, 2021(2): 104-107.
[7] 张帅, 户杉杉, 潘荣艺, 等. 茶园土壤酸化研究进展[J]. 茶叶, 2019, 45(1): 17-23.
Zhang S, Hu S S, Pan R Y, et al.Research progress on soil acidification of tea garden[J]. Journal of Tea, 2019, 45(1): 17-23.
[8] 汪吉东, 许仙菊, 宁运旺, 等. 土壤加速酸化的主要农业驱动因素研究进展[J]. 土壤, 2015, 47(4): 627-633.
Wang J D, Xu X J, Ning Y W, et al.Progresses in agricultural driving factors on accelerated acidification of soils[J]. Soils, 2015, 47(4): 627-633.
[9] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244.
Xu R K.Research progresses in soil acidification an its control[J]. Soils, 2015, 47(2): 238-244.
[10] 于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11): 3137-3143.
Yu T Y, Sun X S, Shi C R, et al.Advances in soil acidification hazards and control techniques[J]. Chinese Journal of Ecology, 2014, 33(11): 3137-3143.
[11] 阮弋飞, 汪天娜, 章明奎. 河谷平原水田植茶酸化对耕层土壤化学和生物学性状的影响[J]. 浙江农业科学, 2021, 62(9): 1713-1715.
Ruan Y F, Wang T N, Zhang M K.Effect of tea-plantation acidification on chemical and biological properties of topsoil of paddy field in valley plain[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(9): 1713-1715.
[12] 李昌娟, 杨文浩, 周碧青, 等. 生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响[J]. 土壤通报, 2021, 52(2): 387-397.
Li C J, Yang W H, Zhou B Q, et al.Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field[J]. Chinese Journal of Soil Science, 2021, 52(2): 387-397.
[13] 王义祥, 黄家庆, 叶菁, 等. 生物炭对酸化茶园土壤性状和细菌群落结构的影响[J]. 植物营养与肥料学报, 2020, 26(11): 1967-1977.
Wang Y X, Huang J Q, Ye Q, et al.Effects of different amount of biochar application on soil property and bacterial community structure in acidified tea garden[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 1967-1977.
[14] 田亚男, 何志龙, 吕昭琪, 等. 凋落茶叶对华中地区酸化茶园土壤N2O与CO2排放的影响[J]. 农业环境科学学报, 2016, 35(8): 1625-1632.
Tian Y N, He Z L, Lv Z Q, et al.Effects of tea litter applications on N2O and CO2 fluxes from acidification of tea garden soil in central China[J]. Journal of Agro-Environment Science, 2016, 35(8): 1625-1632.
[15] 袁珍贵, 杨晶, 郭莉莉, 等. 酸化对土壤质量的影响及酸化土壤的主要改良措施研究进展[J]. 农学学报, 2015, 5(7): 51-55.
Yuan Z G, Yang J, Guo L L, et al.Research progress on effect of acidification on soil quality and main improving measures for acidified soil[J]. Journal of Agriculture, 2015, 5(7): 51-55.
[16] 何志龙, 夏文建, 周维, 等. 添加秸秆生物质炭对酸化茶园土壤N2O和CO2排放的短期影响研究[J]. 生态环境学报, 2016, 25(7): 1230-1236.
He Z L, Xia W J, Zhou W, et al.Effects of wheat-straw deried biochar on acidified tea garden soil N2O and CO2 emission in short-term laboratory experiments[J]. Ecology and Environmental Sciences, 2016, 25(7): 1230-1236.
[17] 郭莉莉, 袁珍贵, 朱伟文, 等. 土壤酸化对土壤生物学特性影响的研究进展[J]. 湖南农业科学, 2014(24): 30-32, 35.
Guo L L, Yuan Z G, Zhu W W, et al.Research progress in soil acidification effect on soil biological characteristics[J]. Hunan Agricultural Sciences, 2014(24): 30-32, 35.
[18] 李强, 曹莹, 高存富, 等. 不同酸化体系测定中国不同地区土壤重金属的比较研究[J]. 环境化学, 2020, 39(4): 1153-1157.
Li Q, Cao Y, Gao C F, et al.Comparative study of acidification systems for determination of heavy metals in soils from different areas in China[J]. Environmental Chemistry, 2020, 39(4): 1153-1157.
[19] 王浩, 章明奎. 有机质积累和酸化对污染土壤重金属释放潜力的影响[J]. 土壤通报, 2009, 40(3): 538-541.
Wang H, Zhang M K.Effects of organic matter accumulation and acidification on release potential of heavy metals from polluted soils[J]. Chinese Journal of Soil Science, 2009, 40(3): 538-541.
[20] 雷琼, 袁玲, 黄建国. 施钾对茶园土壤钾素及平衡的影响[J]. 植物营养与肥料学报, 2007, 13(2): 254-261.
Lei Q, Yuan L, Huang J G.Effect of potassium fertilizer application on the potassium and its equilibrium in tea-grown soils[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 254-261.
[21] 潘明安, 张锡洲, 王永东, 等. 不同尺度下低山丘陵区茶园土壤钾素含量变异与制图[J]. 茶叶科学, 2010, 30(3): 177-183.
Pan M A, Zhang X Z, Wang Y D, et al.Variability of soil potassium in low mountain and hilly region at different scales and its mapping[J]. Journal of Tea Science, 2010, 30(3): 177-183.
[22] 王永东, 李廷轩, 张锡洲, 等. 不同尺度下低山茶园土壤钾素含量空间变异特征[J]. 土壤通报, 2008, 39(2): 309-314.
Wang Y D, Li T X, Zhang X Z, et al.Spatial variability of the content of potassium in hilly tea plantation soils with different sampoing scales[J]. Chinese Journal of Soil Science, 2008, 39(2): 309-314.
[23] 华伟平, 丘甜, 叶宏萌, 等. 茶园土壤速效钾及全钾评价[J]. 林业勘察设计, 2020, 40(1): 13-18.
Hua W P, Qiu T, Ye H M, et al.Available potassium and fast potassium evaluation of the soils of tea garden[J]. Forestry Prospect and Design, 2020, 40(1): 13-18.
[24] 施龙博, 方斌, 董立宽. 江浙典型茶园的土壤速效钾空间分布[J]. 山地学报, 2017, 35(2): 160-169.
Shi L B, Fang B, Dong L K.Spatial distribution characteristics of available potassium in typical tea gardens in Jiangsu province and Zhejiang province[J]. Mountain Research, 2017, 35(2): 160-169.
[25] Srivastava S, Rupa T R, Swarup A, et al.Effect of long-term fertilization and manuring on potassium release properties in a Typic Ustochrept[J] . Journal of Plant Nutrition and Soil Science, 2002, 165: 352-306.
[26] Srinivasarao C, Kundu S, Ramachandrappa B K, et al.Potassium release characteristics, potassium balance, and fingermillet (Eleusine coracana G.) yield sustainability in a 27-yearlong experiment on an Alfisol in the semi-arid tropical India[J]. Plant and Soil, 2014, 374(1): 315-330.
[27] Shaimukhametov M S H, Mamadaliev G N. The effect of long-term fertilization on the potassium status and mineralogy of clay particles in typical Serozem[J]. Eurasian Soil Science, 2003, 36(9): 994-1002.
[28] 冀宏杰, 张怀志, 张维理, 等. 我国农田土壤钾平衡研究进展与展望[J]. 中国生态农业学报, 2017, 25(6): 920-930.
Ji H J, Zhang H Z, Zhang W L, et al.Farmland potassium balance in China: a review[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 920-930.
[29] 张亦驰, 李林, 史喜林, 等. 土壤钾素形态及有效性的研究进展[J]. 吉林农业科学, 2013, 38(6): 52-54, 61.
Zhang Y C, Li L, Shi X L, et al.Progress on researches of soil potassium forms and effectiveness[J]. Journal of Northeast Agricultural Sciences, 2013, 38(6): 52-54, 61.
[30] 于天仁, 陈志诚. 土壤发生中的化学过程[M]. 北京: 科学出版社, 1990.
Yu T R, Chen Z C.The chemical processes occur in soils [M]. Beijing: Science Press, 1990.
[31] Calba H, Zonkeng C, Ngonkeu E L M, et al. Responses of maize grain yield to changes in acid soil characteristics after soil amendments[J]. Plant & Soil, 2006, 284(1): 45-57.
[32] 吴志丹, 江福英, 尤志明, 等. 福建省安溪县铁观音茶园土壤钾素状况[J]. 茶叶学报, 2018, 59(1): 26-32.
Wu Z D, Jiang F Y, You Z M, et al.Study on soil potassium status of Tieguanyin tea plantations in Anxi county of Fujian province[J]. Journal of Tea Science, 2018, 59(1): 26-32.
[33] 谢建昌, 杜承林. 土壤钾素的有效性及其评定方法的研究[J]. 土壤学报, 1988, 25(3): 269-280.
Xie J C, Du C L.Studies on availability of potassium in soils and its evaluating methods[J]. Acta Pedologica Sinica, 1988, 25(3): 269-280.
[34] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.
Zhang G L, Gong Z T.Laboratory analysis method for soil investigation [M]. Beijing: Science Press, 2012.
[35] 熊毅. 土壤胶体(第二册)[M]. 北京: 科学出版社, 1985: 194-240.
Xiong Y.Soil colloids (Book 2) [M]. Beijing: Science Press, 1985: 194-240.
[36] 秦文, 龚键, 李福春, 等. 土壤中常见原生矿物组合的定量方法研究[J]. 土壤通报, 2017, 48(5): 1076-1081.
Qin W, Gong J, Li F C, et al.Quantitative analysis method on the primary minerals, in soil[J]. Chinese Journal of Soil Science, 2017, 48(5): 1076-1081.
[37] 韩天富. 酸化红壤施石灰后根际土壤钾素转化特征与机制[D]. 北京: 中国农业科学院, 2017.
Han T F.Characteristics and mechanisms of potassium transformation in rhizosphere soil of red earth with acidification after lime application [D]. Beijing: Chinese Academy of Agricultural Sciences, 2017
[38] 梅旭阳, 高菊生, 杨学云, 等. 红壤酸化及石灰改良影响冬小麦根际土壤钾的有效性[J]. 植物营养与肥料学报, 2016, 22(6): 1568-1577.
Mei X Y, Gao J S, Yang X Y, et al.The response of soil potassium availability in rhizospheric soil of winter wheat to acidified and limed red soil[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1568-1577.
[39] 潘大伟, 梁成华, 杜立宇. 土壤含钾矿物的释钾研究进展[J]. 土壤通报, 2005, 36(2): 253-258.
Pan D W, Liang C H, Du L Y.Progress in research on potassium release form K-beared minerals in soil[J]. Chinese Journal of Soil Science, 2005, 36(2): 253-258.
[40] 梁成华, 魏丽萍, 罗磊. 土壤固钾与释钾机制研究进展[J]. 地球科学进展, 2002, 17(5): 679-684.
Liang C H, Wei L P, Luo L.Advance in research on mechanisms of potassium releasing and fixing in soils[J]. Advances in Earth Science, 2002, 17(5): 679-684.
[41] 章明奎. 土壤地理学与土壤调查技术[M]. 北京: 中国农业科学技术出版社, 2011: 24-32.
Zhang M K.Soil geography and soil survey techniques [M]. Beijing: China Agricultural Science and Technology Press, 2011: 24-32.
Outlines

/