Welcome to Journal of Tea Science,Today is
Research Paper

Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring

  • LI Congcong ,
  • WANG Haoqian ,
  • YE Yufan ,
  • CHEN Yao ,
  • REN Hengze ,
  • LI Yuteng ,
  • HAO Xinyuan ,
  • WANG Xinchao ,
  • CAO Hongli ,
  • YUE Chuan
Expand
  • 1. Tea Research Institute, Chinese Academy of Agriculture Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China;
    2. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    3. College of Food Science, Southwest University, Chongqing 400715, China

Received date: 2023-02-15

  Revised date: 2023-03-20

  Online published: 2023-06-29

Abstract

Hormones play important roles in the regulation of plant growth and development. In order to clarify the effects of different hormones on the growth and development of tea shoots in spring, and to identify the main pathways and key genes involved, tea cultivar ‘Longjing 43’ was used as the experimental materials, and treated with 100 μmol·L-1 ABA, 100 μmol·L-1 GA3 and 100 μmol·L-1 IAA respectively in the sprouting period. The phenotypic characteristics of buds were determined, and the buds at the 7th day after treatments were investigated using RNA-Seq technique. The results show that exogenous ABA treatment inhibited the germination and growth of shoots, and the length of shoots was significantly shorter than the control after 7 days after treatment. On the other hand, GA3 and IAA treatments had a promoting effect, and the bud length was significantly extended on the 7th day after GA3 treatment and on the 14th day after IAA treatment. RNA-Seq analysis indicates differentially expressed genes were mainly enriched in amino acid biosynthesis pathway under ABA treatment, oxidative phosphorylation pathway and photosynthesis pathway under GA3 treatment, and flavonoid biosynthesis pathway under IAA treatment. GAI, PSBO2, PSBQ-2 and PSBP-1 related to plant hormone and photosynthesis pathways might be the key genes involved in shoot growth and development. The real-time fluorescence quantitative PCR results of some candidate genes were consistent with the RNA-Seq results. The above studies identified the main pathways and key genes involved in the hormone regulation on tea shoot growth and development, which provided a theoretical basis for deeply revealing the regulation mechanism of tea shoot growth and development.

Cite this article

LI Congcong , WANG Haoqian , YE Yufan , CHEN Yao , REN Hengze , LI Yuteng , HAO Xinyuan , WANG Xinchao , CAO Hongli , YUE Chuan . Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring[J]. Journal of Tea Science, 2023 , 43(3) : 335 -348 . DOI: 10.13305/j.cnki.jts.2023.03.002

References

[1] 岳川, 曾建明, 章志芳, 等. 茶树中植物激素研究进展[J]. 茶叶科学, 2012, 32(5): 382-392.
Yue C, Zeng J M, Zhang Z F, et al.Research progress in thephytohormone of tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2012, 32(5): 382-392.
[2] 王雷刚. 茶树中脱落酸分解代谢基因对休眠解除的影响[D]. 合肥: 安徽农业大学, 2018.
Wang L G.Effect of abscisic acid catabolic genes on dormancy release in tea plants[D]. Hefei: Anhui Agricultural University, 2018.
[3] 刘春香, 曹齐卫, 于玉梅, 等. 外源激素及内源激素对黄瓜果实发育的影响[J]. 安徽农业科学, 2011, 39(18): 10772-10774.
Liu C X, Cao Q W, Yu Y M, et al.Effects of exogenous hormone treatments on the fruit development of cucumber and analysis on its endogenous[J]. Anhui Agricultural Science, 2011, 39(18): 10772-10774.
[4] 孙刚, 张文学, 李祖章, 等. 不同激素对早稻剑叶和根系衰老特性影响的研究[J]. 江西农业学报, 2009, 21(2): 11-14.
Sun G, Zhang W X, Li Z Z, et al.Study on effect of different hormones on senescence of flag leaf and root system of early rice[J]. Acta Agriculturae Jiangxi, 2009, 21(2): 11-14.
[5] Shi J, Wang N, Zhou H, et al.Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.)[J]. BMC Plant Biology, 2020, 20(1): 1-14.
[6] 路超, 聂佩显, 王来平, 等. 喷施植物生长调节剂对苹果变产树新梢生长及梢叶矿质元素和内源激素含量的影响[J]. 烟台果树, 2018(4): 7-9.
Lu C, Nie P X, Wang L P, et al.Effects of spraying plant growth regulators on the growth of new shoots and the content of mineral elements and endogenous hormones in shoots and leaves of apple variety trees[J]. Yantai Fruits, 2018(4): 7-9.
[7] Yuan C, Sagheer A, Tangren C, et al.Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in chrysanthemum (Dendranthema grandiflorum ‘Jinba’)[J]. International Journal of Molecular Sciences, 2018, 19(6): 1590-1611.
[8] Müller D, Leyser O.Auxin, cytokinin and the control of shoot branching[J]. Annals of Botany, 2011, 107(7): 1203-1212.
[9] Ni J, Gao C, Chen M S, et al.Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas[J]. Plant and Cell Physiology, 2015, 8(56): 1655-1666.
[10] Yao C, Finlayson S A.Abscisic acid is a general negative regulator of arabidopsis axillary bud growth[J]. Plant Physiology, 2015, 169(1): 611-626.
[11] Matthias A, Jörg-peter S, Barbara E, et al. Expression of the arabidopsis mutant abi1 gene alters abscisic acid sensitivity, stomatal developmentand growth morphology in gray poplars1[J]. Plant physiology, 2009, 151(4): 2110-2119.
[12] Thimann K V, Skoog F.Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development[J]. Proceedings of the National Academy of Sciences of the United States of America, 1933, 19(7): 714-716.
[13] Yang L, Zhu S, Xu J.Roles of auxin in the inhibition of shoot branching in 'Dugan' fir[J]. Tree Physiology, 2022, 42(7): 1411-1431.
[14] 潘根生, 沈生荣, 钱利生, 等. 茶树新梢生育的内源激素水平及其调控机理(第一报)茶树新梢生育过程激素水平的季节变化[J]. 茶叶, 2000, 16(3): 139-143.
Pan G S, Shen S R, Qian L S, et al.Endogenous hormone level and its regulation mechanism during growth of tea plant shoot (Ⅰ) changes of hormone content in the growth of tea plant shoot[J]. Journal of Tea, 2000, 16(3): 139-143.
[15] 贺群. 外源吲哚乙酸对茶树响应镉胁迫的影响[D]. 长沙: 湖南农业大学, 2019.
He Q.The impact of exogenous indole-3-acetic acid on tea (Camellia sinensis (L.) O. Kuntze) exposed to cadmium[D]. Changsha:: Hunan Agricultural University, 2019.
[16] Wang X, Feng H, Chang Y, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447-4457.
[17] Hao X, Horvath D, Chao W, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
[18] Zhuang W, Gao Z, Wen L, et al.Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA[J]. Horticulture Research, 2015, 2(1): 15046-15056.
[19] 卢环, 王成, 曾玲玲, 等. 不同生长时期喷施外源ABA对绿豆农艺性状及产量的影响[J]. 中国农业文摘(农业工程), 2022, 34(2): 91-93.
Lu H, Wang C, Zeng L L, et al.Effects of spraying exogenous ABA at different growth stages on agronomic characters and yield of mung bean[J]. Agricultural Science and Engineering in China, 2022, 34(2): 91-93.
[20] 潘根生, 钱利生, 吴伯千, 等. 茶树新梢生育的内源激素水平及其调控机理[J]. 茶叶, 2001, 27(1): 35-38.
Pan G S, Qian L S, Wu B Q, et al.Endogenous hormone level and its regulation mechanism during growth of tea plant shoot[J]. Journal of Tea, 2001, 27(1): 35-38.
[21] 宋佳琦, 王玉祥, 张博. 内源激素变化及外源生长素对紫花苜蓿种子萌发过程的影响[J]. 草地学报, 2018, 26(3): 691-696.
Song J Q, Wang Y X, Zhang B.Effects of endogenous hormone change and exogenous auxin on the germination process of alfalfa seed[J]. Acta Agrestia Sinica, 2018, 26(3): 691-696.
[22] Peng J R, Carol P, Richards D E, et al.The arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1998, 11(23): 3194-3205.
[23] 蒋梦婷, 朱宁, 龚洪泳, 等. ‘南通小方柿’赤霉素不敏感基因DkGAI2的克隆与功能分析[J]. 中国农业科学, 2019, 52(19): 3417-3429.
Jiang M T, Zhu N, Gong H Y, et al.Cloning and function analysis of gibberellin insensitive DkGAI2 gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi)[J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[24] Yuan L, Xu D Q.Stimulatory effect of exogenous GA3 on photosynthesis and the level of endogenous GA1+3 in soybean leaf[J]. Journal of Plant Physiology and Molecular Biology, 2002, 28(4): 317-320.
[25] 张丽丽, 张战, 赵一洲, 等. 外源赤霉素对盐胁迫下水稻幼苗生长及生理基础的影响[J]. 北方水稻, 2013, 43(3): 4-7.
Zhang L L, Zhang Z, Zhao Y Z, et al.Effect of exogenous GA3 on the growth and physiological basis of rice seedling under NaCl stress[J]. North Rice, 2013, 43(3): 4-7.
[26] 于勇, 翁俊, 徐春和. 植物光系统Ⅱ放氧复合体外周蛋白结构和功能的研究进展[J]. 植物生理学报, 2001, 27(6): 441-450.
Yu Y, Weng J, Xu C H.Progress in the study of the structure and function of plant photosystem II oxygen release complex periprotein in vitro[J]. Acta Phytophysiologica Sinica, 2001, 27(6): 441-450.
[27] 何春艳, 尹淑霞. 类黄酮物质对生长素作用的研究进展[J]. 分子植物育种, 2018, 16(16): 5449-5462.
He C Y, Yin S X.Research progress on the effect offlavonoids on growth hormone[J]. Molecular Plant Breeding, 2018, 16(16): 5449-5462.
[28] 周青. 类黄酮及其植物生理学作用[J]. 生物学通报, 1986(12): 1-2.
Zhou Q.Flavonoids and their plant physiological functions[J]. The Biological Bulletin, 1986(12): 1-2.
[29] 张亚真, 张芬, 王丽鸳, 等. 植物谷胱甘肽转移酶在类黄酮累积中的作用[J]. 植物生理学报, 2015, 51(11): 1815-1820.
Zhang Y Z, Zhang F, Wang L Y, et al.Plant glutathione S-transferases: roles in flavonoid accumulation[J]. Plant Physiology Journal, 2015, 51(11): 1815-1820.
Outlines

/