Welcome to Journal of Tea Science,Today is
Research Paper

Comparison of Soluble and Membrane-bound Polyphenol Oxidase from Cultivars Suitable to Ninghong Tea Production

  • ZHAN Kun ,
  • YANG Zhengli ,
  • XU Ziyi ,
  • LAI Zhangfeng ,
  • LI Jun ,
  • CHEN Luojun ,
  • ZHOU Sixi ,
  • LI Mingxi ,
  • GAN Yudi
Expand
  • 1. College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
    2. Xiushui Tea Science Research, Jiujiang 332400, China;
    3. Jiangxi Ninghong Group Limited Company, Jiujiang 332400, China

Received date: 2023-02-12

  Revised date: 2023-04-20

  Online published: 2023-06-29

Abstract

In order to investigate the enzymatic properties of polyphenol oxidase (PPO) in cultivars suitable for Ninghong tea production, as well as to increase the theaflavin content in Ninghong tea, one bud and two fresh leaves from ‘Ningzhou population’, ‘Ningzhou 2’ and ‘Dayelong’ were used as raw materials to obtain membrane-bound polyphenol oxidase (mPPO) and soluble polyphenol oxidase (sPPO) crude enzymes and to analyze the enzymatic properties. Using catechol as the substrate, the mPPO specific activity of each cultivar was higher than sPPO specific activity. mPPO specific activity of ‘Dayelong’ was the highest (542.59±25.13 U·mg-1), and sPPO activity of ‘Ningzhou 2’ was the lowest (112.57±14.01 U·mg-1). The optimum reaction temperature for mPPO was 40-60 ℃, the optimum reaction temperature for sPPO was 30-50 ℃, and the highest optimum reaction temperature for mPPO of ‘Ningzhou 2’ and ‘Dayelong’ was 55 ℃. The lowest sPPO optimum reaction temperature for ‘Ningzhou 2’ and ‘Ningzhou population’ was 35 ℃. The optimum pH of sPPO ranged from 7.00-8.50 with one peak, while the optimum pH of mPPO ranged from 5.00-8.00 with two peaks. The optimum pH of sPPO in ‘Ningzhou population’ was 8.00, and the optimum pH of mPPO in ‘Ningzhou 2’ was 5.50. mPPO and sPPO had strong affinity for dihydroxy phenols, and mPPO in ‘Ningzhou 2’ had the strongest affinity for catechol and the highest catalytic efficiency. Ascorbic acid had the best inhibitory effect on sPPO in ‘Ningzhou population’. While halide inhibitors had no inhibitory effect on both sPPO and mPPO activities in tea cultivars suitable for Ninghong tea production. EDTA had an activating effect on mPPO. The thermal deactivation of sPPO and mPPO in these tea cultivars followed the primary reaction kinetics, with mPPO in ‘Dayelong’ having the best thermal resistance, the worst thermal sensitivity, and the weakest sensitivity to temperature. While sPPO in ‘Ningzhou population’ had the worst thermal resistance. The sPPO of ‘Ningzhou population’ was the worst heat-resistance, the highest heat-sensitivity and temperature-sensitivity. The results show that there were some differences in the sPPO and mPPO enzyme properties among the cultivars. Tea cultivar ‘Dayelong’ had the highest mPPO specific activity and the best heat resistance, which provided a suitable enzyme source for the processing of high theaflavin Ninghong tea. This study also provided a theoretical reference for the actual Ninghong tea production.

Cite this article

ZHAN Kun , YANG Zhengli , XU Ziyi , LAI Zhangfeng , LI Jun , CHEN Luojun , ZHOU Sixi , LI Mingxi , GAN Yudi . Comparison of Soluble and Membrane-bound Polyphenol Oxidase from Cultivars Suitable to Ninghong Tea Production[J]. Journal of Tea Science, 2023 , 43(3) : 356 -366 . DOI: 10.13305/j.cnki.jts.2023.03.003

References

[1] 岳翠男, 秦丹丹, 杨普香, 等. QDA和GC-MS结合PLSR分析宁红茶中的风味物质[J]. 食品与发酵工业, 2021, 47(7): 225-231.
Yue C N, Qin D D, Yang P X, et al.Flavor compounds in Ning black tea by QDA and GC-MS combined with PLSR[J]. Food and Fermentation Industries, 2021, 47(7): 225-231.
[2] Tan J F, Dai W D, Lu M L, et al.Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach[J]. Food Research International, 2016, 79: 106-113.
[3] Guo X Y, Lv Y Q, Ye Y, et al.Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves[J]. Food Chemistry, 2020, 339: 128088. doi: 10.1016/j.foodchem.2020.128088.
[4] Mishra B B, Gautam S, Sharma A.Purification and characterisation of polyphenol oxidase (PPO) from eggplant (Solanum melongena)[J]. Food Chemistry, 2012, 134(4): 1855-1861.
[5] 王治会, 李文金, 杨普香, 等. 江西引种无性系茶树良种的灰色关联度评价[J]. 江西农业大学学报, 2021, 43(4): 731-739.
Wang Z H, Li W J, Yang P X, et al.Evaluation of grey correlation degree of introduced clone tea varieties in Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(4): 731-739.
[6] 徐玲玲, 方亮, 廖亮, 等. 自然突变株系—大叶龙茶酯酶同工酶及RAPD分析[J]. 茶叶科学, 2002, 22(1): 87-89.
Xu L L, Fang L, Liao L, et al.Natural mutant strain: Dayelong tea esterase isoenzyme and RAPD analysis[J]. Journal of Tea Science, 2002, 22(1): 87-89.
[7] 徐琪, 郑舒媛, 阚诗卓, 等. 不同茶树品种PPO基因单核苷酸多态性分析[J]. 分子植物育种, 2017, 15(3): 1109-1113.
Xu Q, Zheng S Y, Kan S Z, et al.Single nucleotide polymorphism analysis of PPO gene in different tea varieties[J]. Molecular Plant Breeding, 2017, 15(3): 1109-1113.
[8] 郑楚楚. 茶树PPO基因家族的表达及SNP分析[D]. 长沙: 湖南农业大学, 2019.
Zheng C C.Gene expression and single nucleotide polymorphisms analysis of polyphenol oxidase gene family in Camellia sinensis[D]. Changsha: Hunan Agricultural University, 2019.
[9] 闫小宇, 董喆, 王沙沙, 等. 不同葡萄品种多酚氧化酶酶学特性比较[J]. 食品科学, 2016, 37(19): 216-221.
Yan X Y, Dong Z, Wang S S, et al.Comparative enzymatic kinetics of polyphenol oxidase from different grape varieties[J]. Food Science, 2016, 37(19): 216-221.
[10] 王世敏, 刘健君, 程金朋, 等. 西南冷凉高地不同品种马铃薯多酚氧化酶酶学特性及其抑制剂的研究[J]. 中国食品添加剂, 2021, 32(8): 101-106.
Wang S M, Liu J J, Cheng J P, et al.Study on the enzymatic characteristics and inhibitors of polyphenol oxidase from different potato varieties in cold highland of Southwest China[J]. China Food Additives, 2021, 32(8): 101-106.
[11] Liu F, Han Q Y, Ni Y Y.Comparison of biochemical properties and thermal inactivation of membrane-bound polyphenol oxidase from three apple cultivars (Malus domestica Borkh)[J]. International Journal of Food Science & Technology, 2018, 53(4): 1005-1012.
[12] 江用文, 滑金杰, 袁海波, 等. 不同茶树品种悬浮发酵对茶黄素形成的影响[J]. 食品科学, 2018, 39(20): 71-77.
Jiang Y W, Huan J J, Yuan H B, et al.Effect of different tea cultivars on theaflavin formation during suspended fermentation[J]. Food Science, 2018, 39(20): 71-77.
[13] 穆兵, 艾仄宜, 唐君, 等. 不同叶色茶树品种春季新梢生理生化特性研究[J]. 江苏农业科学, 2021, 49(18): 143-149.
Mu B, Ai Z Y, Tang J, et al.Study on physiological and biochemical characteristics of spring shoots of tea tree cultivars with different leaf colors[J]. Jiangsu Agricultural Sciences, 2021, 49(18): 143-149.
[14] Liu F, Zhao J H, Gan Z L, et al.Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji)[J]. Food Chemistry, 2015, 173: 86-91.
[15] Mayer A M.Polyphenol oxidases in plants and fungi: going places? A review[J]. Phytochemistry, 2006, 67(21): 2318-2331.
[16] 甘玉迪. 茶树CsPPO基因内源表达及外源原核表达分析[D]. 南京: 南京农业大学, 2018.
Gan Y D.Analysis of endogenous expression and exogenous prokaryotic expression of CsPPO gene in tea plant[D]. Nanjing: Nanjing Agricultural University, 2018.
[17] 胡月恒, 刘芳. 砀山酥梨膜结合态与可溶态多酚氧化酶性质比较[J]. 食品工业科技, 2021, 42(7): 324-329.
Hu Y H, Liu F.Comparison of properties of membrane-bound and soluble polyphenol oxidase from Dangshan pear[J]. Science and Technology of Food Industry, 2021, 42(7): 324-329.
[18] Piñero E O, Carmona F G, Ferrer A S.Latent polyphenol oxidase from quince fruit pulp (Cydonia oblonga): purification, activation and some properties[J]. Journal of the Science of Food and Agriculture, 2006, 86(13): 2172-2178.
[19] 刘芳. 苹果膜结合态多酚氧化酶分离纯化及性质研究[D]. 北京: 中国农业大学, 2015.
Liu F.Purification and characters analysis of membrane-bound polyphenol oxidase from apples (Malus domestica)[D]. Beijing: China Agricultural University, 2015.
[20] 甘玉迪, 孙康, 李会娟, 等. 两种原核表达载体对CsPPO蛋白表达活性的影响[J]. 茶叶科学, 2018, 38(4): 396-405.
Gan Y D, Sun K, Li H J, et al.Effects of two prokaryotic expressed vectors on the activity of PPO from Camellia sinensis[J]. Journal of Tea Science, 2018, 38(4): 396-405.
[21] 崔晓颖, 彭新颜, 贺红军, 等. 芋头多酚氧化酶的分离纯化与酶学特性[J]. 食品科学, 2021, 42(12): 107-115.
Cui X Y, Peng X Y, He H J, et al.Separation, purification and enzymatic characterization of polyphenol oxidase from Taro[J]. Food Science, 2021, 42(12): 107-115.
[22] Taha M, Alrashedy A S, Almandil N B, et al.Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase and α-amylase along with their in-silico study[J]. International Journal of Biological Macromolecules, 2021, 190: 301-318.
[23] Hicham G, Christophe D, Thibaud C.Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus[J]. Journal of Agricultural and Food Chemistry, 2012, 60(1): 500-506.
[24] Leite R S R, Gomes E, Silva R D. Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus[J]. Process Biochemistry, 2007, 42(7): 1101-1106.
[25] Waliszewski K N, Márquez O, Pardio V T.Quantification and characterisation of polyphenol oxidase from vanilla bean[J]. Food Chemistry, 2009, 117(2): 196-203.
[26] 黄建安, 黄意欢, 罗军武, 等. 茶树多酚氧化酶基因的SNP分析[J]. 湖南农业大学学报(自然科学版), 2007, 33(4): 454-458.
Huang J A, Huang Y h, Luo J W, et al. Identification of single nucleotide polymorphisms (SNPs) in polyphenol oxidase gene in tea plant (Camellia sinensis)[J]. Journal of Hunan Agricultural University (Natural Science), 2007, 33(4): 454-458.
[27] 刘仲华, 黄建安. 二十个茶树品种(品系)红碎茶适制性的研究[J]. 中国茶叶加工, 1998(2): 29-33.
Liu Z H, Huang J A.Study on the suitability of black crushed tea of twenty tea cultivars (strains)[J]. China Tea Processing, 1998(2): 29-33.
[28] Zaini N A M, Osman A, Hamid A A, et al. Purification and characterization of membrane-bound polyphenoloxidase (mPPO) from Snake fruit[Salaccazalacca (Gaertn.) Voss][J]. Food Chemistry, 2013, 136(2): 407-414.
[29] 孙慕芳, 陈义. 信阳群体种多酚氧化酶特性研究[J]. 食品科技, 2014, 39(4): 51-53.
Sun M F, Chen Y.Property of polyphenol oxidase from Xinyang population cultivar[J]. Food Science and Technology, 2014, 39(4): 51-53.
[30] 伍梦瑶, 黄莹捷, 姚燕妮, 等. 勐库大叶种茶树多酚氧化酶粗酶的酶学性质[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 579-588.
Wu M Y, Huang Y J, Yao Y N, et al.Characterization of crude polyphenol oxidase isolated from Camellia sinensis var. assamica cv. Mengku[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 579-588.
[31] Mark-Anthony M, H L I K. Substrate specificity of polyphenol oxidase[J]. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55(3): 274-308.
[32] Wang F H, Zhou H L, Cheng F Y, et al.Comparison of the characterization and the temperature/pressure stability of soluble and membrane-bound polyphenol oxidase from ‘Lijiang’ snow peach[J]. LWT-Food Science Technology, 2021, 146: 111401. doi: 10.1016/j.lwt.2021.111401.
[33] 刘辉, 卢扬, 刘永翔, 等. 可溶态和膜结合态马铃薯多酚氧化酶的性质对比[J]. 现代食品科技, 2020, 36(5): 51-56.
Liu H, Lu Y, Liu Y X, et al.Comparison of properties of soluble and membrane bound potato polyphenol oxidase[J]. Modern Food Science and Technology, 2020, 36(5): 51-56.
[34] 张立华, 孙晓飞, 张艳侠, 等. 石榴多酚氧化酶的某些特性及其抑制剂的研究[J]. 食品科学, 2007, 28(5): 216-219.
Zhang L H, Sun X F, Zhang Y X, et al.Study on characteristics of PPO and anti-browning inhibitors in pomegranate[J]. Food Science, 2007, 28(5): 216-219.
[35] Zhou L, Wei L, Terefe N S.The inactivation kinetics of soluble and membrane-bound polyphenol oxidase in pear during thermal and high-pressure processing[J]. Food and Bioprocess Technology, 2018, 11(5): 1039-1049.
[36] Han Q Y, Liu F, Li M, et al.Comparison of biochemical properties of membrane-bound and soluble polyphenol oxidase from Granny Smith apple (Malus x domesticaBorkh.)[J]. Food Chemistry, 2019, 289: 657-663.
Outlines

/