Welcome to Journal of Tea Science,Today is
Research Paper

The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology

  • HAN Haidong ,
  • ZHOU Liuting ,
  • HUANG Xiaoyun ,
  • YU Chengran ,
  • HUANG Xiusheng
Expand
  • Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences. Fujian Engineering and Technology Research Center for Recycling Agriculture, Fuzhou 350013, China

Received date: 2023-05-24

  Revised date: 2023-07-10

  Online published: 2023-08-24

Abstract

The tea plantation with Ganoderma lucidum is an ecological cycle intercropping model of resource utilization of tea processing waste, and the composite community formed can cover the ground more thoroughly and play an important role in improving the soil microbial community structure and maintaining the balance of soil microbiological system. In this study, we investigated the changes of tea rhizosphere soil fungal community structure in uncropped (CK), intercropping 1 year (A1), intercropping 2 years (A2) and intercropping 3 years (A3) using Miseq PE300 high-throughput sequencing technology. The results show that: (1) compared with CK, interplanting Ganoderma lucidum significantly increased the contents of available nitrogen, available phosphorus, available potassium and organic carbon in tea rhizosphere soil, with soil of A3 having the highest increase, reaching 32.36%, 13.01%, 69.21% and 9.56%, respectively. (2) The α diversity index shows that the observed species and Chao1 index of tea rhizosphere soil fungal community were CK>A3>A1>A2. ACE index, Shannon index and Simpson index showed A3>CK>A1>A2. (3) The β diversity index shows that the composition and structure of fungal community in tea rhizosphere soil of A2 were relatively different from those of CK, A1 and A3. (4) Through taxonomic analysis, it is found that tea rhizosphere soil fungi were distributed in 18 phyla, 48 classes, 135 orders, 309 families and 632 genera. At phylum level, Ascomycota was the dominant phylum of CK, A1 and A3, with relative abundances of 71.28%, 68.74% and 51.79%, respectively. Basidiomycota was the dominant phylum of A2 with a relative abundance of 64.48%. At the genus level, compared with CK, the contents of Ceratobasidium, Mortierella, Piedraia and Saitozyma in A1 were significantly increased by 59.14, 1.34, 3.70 and 1.92 times, respectively (P<0.05). The relative abundance of Archaeorhizomyces in A2 decreased significantly by 76.81%, while that of Tomentella and Cladophialophora increased by 788.43 and 36.24 times, respectively (P<0.05). The Mortierella and Ganoderma in A3 soil significantly increased 1.09 and 0.81 times, respectively (P<0.05). In summary, the interplanting Ganoderma lucidum in tea gardens can effectively regulate the composition and structure of tea rhizosphere soil fungal community, improve the soil micro-ecological environment and this study provided a theoretical basis for the technical model to promote the sustainable green development of tea plantation.

Cite this article

HAN Haidong , ZHOU Liuting , HUANG Xiaoyun , YU Chengran , HUANG Xiusheng . The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology[J]. Journal of Tea Science, 2023 , 43(4) : 513 -524 . DOI: 10.13305/j.cnki.jts.2023.04.009

References

[1] 李艳姣, 林春桃, 范水生, 等. 福建茶产业发展与供给侧结构性改革互动协调研究[J]. 农业展望, 2021, 17(9): 108-114.
Li Y J, Lin C T, Fan S S, et al.Study on the interaction and coordination between tea industry development and supply-side structural reform in Fujian[J]. Agricultural Outlook, 2021, 17(9): 108-114.
[2] 廖万有, 王宏树, 苏有键, 等. 我国茶园土壤的退化问题及其防治[C]//中国茶叶学会. 茶叶科技创新与产业发展学术研讨会论文集, 重庆: [出版者不详], 2009: 185-193.
Liao W Y, Wang H S, Su Y J, et al.Soil degeneration and its prevention in Chinese tea gardens [C]//China Tea Science Society. Proceedings of the symposium on technological innovation and industrial development of tea. Chongqing: [s.n.], 2009: 185-193.
[3] 史凡, 黄泓晶, 陈燕婷, 等. 间套作功能植物对茶园生态系统服务功能的影响[J]. 茶叶科学, 2022, 42(2): 151-168.
Shi F, Huang H J, Chen Y T, et al.Effects of intercropping functional plants on the ecosystem functions and services in tea garden[J]. Journal of Tea Science, 2022, 42(2): 151-168.
[4] 齐龙波, 周卫军, 郭海彦, 等. 覆盖和间作对亚热带红壤茶园土壤磷营养的影响[J]. 中国生态农业学报, 2008, 16(3): 593-597.
Qi L B, Zhou W J, Guo H Y, et al.Phosphorus nutrient characteristics of tea plantation soils under rice-straw mulch and white-clover intercropping in hilly red-soils of South China[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 593-597.
[5] 宋莉, 廖万有, 王烨军, 等. 套种绿肥对茶园土壤理化性状的影响[J]. 土壤, 2016, 48(4): 675-679.
Song L, Liao W Y, Wang Y J, et al.Effects of interplanting green manure on soil physico-chemical characters in tea plantation[J]. Soils, 2016, 48(4): 675-679.
[6] 沈程文, 肖润林, 徐华勤. 覆盖与间作对亚热带丘陵区茶园土壤微生物量的影响[J]. 水土保持学报, 2006, 20(3): 141-144.
Shen C W, Xiao R L, Xu H Q.Effects of cover and intercropping on soil microbial biomass of tea plantations in subtropical hilly region[J]. Journal of Soil and Water Conservation, 2006, 20(3): 141-144.
[7] 徐华勤, 肖润林, 宋同清, 等. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性, 2008, 16(2): 166-174.
Xu H Q, Xiao R L, Song T Q, et al.Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations[J]. Biodiversity Science, 2008, 16(2): 166-174.
[8] 林黎. 草种组合套种对山地茶园土壤性状及茶叶品质的影响[J]. 茶叶学报, 2017, 58(4): 174-178.
Lin L.Physiochemical properties of soil and quality of tea affected by combination inter-cropping in hilly tea plantation[J]. Acta Tea Sinica, 2017, 58(4): 174-178.
[9] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799.
[10] 黄伟. 浅论食用菌返生态野生栽培[J]. 中国食用菌, 2008, 27(5): 33-34.
Huang W.Superficial view on ecological wild cultivation of edible fungi[J]. Edible Fungi of China, 2008, 27(5): 33-34.
[11] 蒋玉兰, 张海华, 潘俊娴, 等. 茶树和长根菇间作试验研究[J]. 中国食用菌, 2018, 37(6): 32-35, 39.
Jiang Y L, Zhang H H, Pan J X, et al.Experiment study on intercropping of tea trees and Oudemansiella radicata[J]. Edible Fungi of China, 2018, 37(6): 32-35, 39.
[12] 李艳春, 林忠宁, 陆烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响[J]. 福建农业学报, 2019, 34(6): 690-696.
Li Y C, Lin Z N, Lu Z, et al.Microbial diversity and structure in soil under tea bushes Ganoderma lucidum intercropping[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 690-696.
[13] 严丽君, 王普, 施启龙, 等. 动物食性分析在生态学中的应用研究进展——基于DNA宏条形码技术[J]. 生态学报, 2023, 43(8): 3007-3019.
Yan L J, Wang P, Shi Q L, et al.Applications of animal diet analysis based on DNA metabarcoding in ecological research[J]. Acta Ecologica Sinica, 2023, 43(8): 3007-3019.
[14] 李振武, 韩海东, 陈敏健, 等. 套种食用菌对茶园土壤和茶树生长的效应[J]. 福建农业学报, 2013, 28(11): 1088-1092.
Li Z W, Han H D, Chen M J, et al.Effects of intercropping Stropharia Rugoso-annulata on tea garden soil and tea growth[J]. Fujian Journal of Agricultural Sciences, 2013, 28(11): 1088-1092.
[15] Labouyrie M, Ballabio C, Romero F, et al.Patterns in soil microbial diversity across Europe[J]. Nature Communications, 2023, 14(1): 3311. doi: 10.1038/s41467-023-37937-4.
[16] Saleem M, Hu J, Jousset A.More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50(1): 145-168.
[17] 赵佳佳, 李季, 杜相革. 不同生产模式对土壤微生物种群数量的影响[J]. 华北农学报, 2011, 26(s1): 220-224.
Zhao J J, Li J, Du X G.Dynamics of soil microbial community in the experiment of organic, green and conventional vegetable production systems[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(s1): 220-224.
[18] 林雁冰, 薛泉宏, 颜霞. 不同栽培模式下玉米根系对土壤微生物区系的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(12): 101-107.
Lin Y B, Xue Q H, Yan X.Effects of the maize root on soil microbial flora under different cultivation patterns[J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(12): 101-107.
[19] 傅海平, 周品谦, 王沅江, 等. 绿肥间作对茶树根际土壤真菌群落的影响[J]. 茶叶通讯, 2020, 47(3): 406-415.
Fu H P, Zhou P Q, Wang Y J, et al.Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant[J]. Journal of Tea Communication, 2020, 47(3): 406-415.
[20] Christopher W S, Anna R.Comment on “global diversity and geography of soil fungi”[J]. Science, 2015, 348(6242): 1438-1438.
[21] Wei Z, Yu D.Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing[J]. Archives of Microbiology, 2018, 200(4): 653-662.
[22] Zhang T, Wang N F, Liu H Y, et al.Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund region, Svalbard (High Arctic)[J]. Frontiers in Microbiology, 2016, 7: 227. doi: 10.3389/fmicb.2016.00227.
[23] Lauber C L, Strickland M S, Bradford M A, et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9): 2407-2415.
[24] Prakash J, Mishra S.Role of beneficial soil microbes in alleviating climatic stresses in plants [M]//Kumar A, Singh J, Ferreira L F R. Microbiome under changing climate: implications and solutions. Cambridge: Woodhead Publishing, 2022: 29-68.
[25] Peroh D.Plant-associated fungal communities in the light of meta'omics[J]. Fungal Diversity, 2015, 75: 1-25.
[26] Wang H Y, Guo S Y, Huang M R, et al.Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota[J]. Science China life Sciences, 2010, 53(10): 1163-1169.
[27] Lynch M D J, Thorn R G. Diversity of Basidiomycetes in Michigan agricultural soils[J]. Applied and Environmental Microbiology, 2006, 72(11): 7050-7056.
[28] Osorio N W, Habte M.Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Communications in Soil Science & Plant Analysis, 2014, 45(4): 451-460.
[29] 陈力力, 刘金, 李梦丹, 等. 水稻-油菜双序列复种免耕、翻耕土壤真菌多样性[J]. 激光生物学报, 2018, 27(1): 60-68, 59.
Chen L L, Liu J, Li M D, et al.Diversity of filamentous fungus community in paddy fields with different tillage methods[J]. Acta Laser Biology Sinca, 2018, 27(1): 60-68, 59.
[30] Zhang H, Wu X, Li G, et al.Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils, 2011, 47(5): 543-554.
[31] Li F, Chen L, Redmile-Gordon M, et al.Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation and Development, 2018, 29(6): 1642-1651.
[32] 林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望[J]. 草业学报, 2013, 22(5): 310-325.
Lin S S, Sun X W, Wang X J, et al.Mycorrhizal studies and their application prospects in China[J]. Acta Prataculturae Sinica, 2013, 22(5): 310-325.
[33] Li S M, Fan W, Xu G, et al.Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome[J]. Frontiers in Microbiology, 2023, 14: 1117355. doi: 10.3389/fmicb.2023.1117355.
[34] Zhou X G, Zhang J Y, Rahman M K U, et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant, 2023, 16(5): 849-864.
Outlines

/