Welcome to Journal of Tea Science,Today is

Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (4): 513-524.doi: 10.13305/j.cnki.jts.2023.04.009

• Research Paper • Previous Articles     Next Articles

The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology

HAN Haidong, ZHOU Liuting*, HUANG Xiaoyun, YU Chengran, HUANG Xiusheng*   

  1. Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences. Fujian Engineering and Technology Research Center for Recycling Agriculture, Fuzhou 350013, China
  • Received:2023-05-24 Revised:2023-07-10 Online:2023-08-15 Published:2023-08-24

Abstract: The tea plantation with Ganoderma lucidum is an ecological cycle intercropping model of resource utilization of tea processing waste, and the composite community formed can cover the ground more thoroughly and play an important role in improving the soil microbial community structure and maintaining the balance of soil microbiological system. In this study, we investigated the changes of tea rhizosphere soil fungal community structure in uncropped (CK), intercropping 1 year (A1), intercropping 2 years (A2) and intercropping 3 years (A3) using Miseq PE300 high-throughput sequencing technology. The results show that: (1) compared with CK, interplanting Ganoderma lucidum significantly increased the contents of available nitrogen, available phosphorus, available potassium and organic carbon in tea rhizosphere soil, with soil of A3 having the highest increase, reaching 32.36%, 13.01%, 69.21% and 9.56%, respectively. (2) The α diversity index shows that the observed species and Chao1 index of tea rhizosphere soil fungal community were CK>A3>A1>A2. ACE index, Shannon index and Simpson index showed A3>CK>A1>A2. (3) The β diversity index shows that the composition and structure of fungal community in tea rhizosphere soil of A2 were relatively different from those of CK, A1 and A3. (4) Through taxonomic analysis, it is found that tea rhizosphere soil fungi were distributed in 18 phyla, 48 classes, 135 orders, 309 families and 632 genera. At phylum level, Ascomycota was the dominant phylum of CK, A1 and A3, with relative abundances of 71.28%, 68.74% and 51.79%, respectively. Basidiomycota was the dominant phylum of A2 with a relative abundance of 64.48%. At the genus level, compared with CK, the contents of Ceratobasidium, Mortierella, Piedraia and Saitozyma in A1 were significantly increased by 59.14, 1.34, 3.70 and 1.92 times, respectively (P<0.05). The relative abundance of Archaeorhizomyces in A2 decreased significantly by 76.81%, while that of Tomentella and Cladophialophora increased by 788.43 and 36.24 times, respectively (P<0.05). The Mortierella and Ganoderma in A3 soil significantly increased 1.09 and 0.81 times, respectively (P<0.05). In summary, the interplanting Ganoderma lucidum in tea gardens can effectively regulate the composition and structure of tea rhizosphere soil fungal community, improve the soil micro-ecological environment and this study provided a theoretical basis for the technical model to promote the sustainable green development of tea plantation.

Key words: tea plantation, intercropping Ganoderma lucidum, rhizosphere soil, fungal community structure

CLC Number: