Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (5): 672-688.doi: 10.13305/j.cnki.jts.2022.05.008
• Research Paper • Previous Articles Next Articles
WANG Feng1,2,3, CHEN Yuzhen2, WU Zhidan2, YOU Zhiming2, YU Wenquan4, YU Xiaomin3, YANG Zhenbiao3,5,*
Received:
2022-02-28
Revised:
2022-05-06
Online:
2022-10-15
Published:
2022-10-28
CLC Number:
WANG Feng, CHEN Yuzhen, WU Zhidan, YOU Zhiming, YU Wenquan, YU Xiaomin, YANG Zhenbiao. Effects of Organic Management Mode on Soil Fungal Community Structure and Functions in Tea Gardens[J]. Journal of Tea Science, 2022, 42(5): 672-688.
[1] 茹玉, 肖庆文, 都静. 全球价值链助推农业产业升级的创新路径研究—基于湄潭县茶产业扶贫项目的案例分析[J]. 农业经济问题, 2019, 472(4): 51-59. Ru Y, Xiao Q W, Du J.Research on innovation path of global value chains (GVCs) promoting the agricultural industry upgrading: experience from the poverty alleviation project of the tea industry in meitan county, guizhou province[J]. Problems of Agricultural Economy, 2019, 472(4): 51-59. [2] Yan P, Shen C, Fan L C, et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture Ecosystems Environment, 2018, 254: 20-25. [3] 丁瑞兴, 黄骁. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[J]. 土壤学报, 1991, 28(3): 229-236. Ding R X, Huang X.Biogeochemical cyele of aluminum and fhuorine in tea garden soil system and its relationship to soil acidification[J]. Acta Pedologica Sinica, 1991, 28(3): 229-236. [4] Wang S Q, Li T X, Zheng Z C.Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China[J]. Ecological Engineering, 2016, 90: 113-119. [5] Han W Y, Kemmitt S J, Brookes P C .Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology Biochemistry, 2007, 39(7): 1468-1478. [6] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea ( [7] 王海斌, 陈晓婷, 王裕华, 等. 不同树龄茶树根际土壤物质对其生长和品质的影响[J]. 热带作物学报, 2019, 40(11): 2149-2159. Wang H B, Chen X T, Wang Y H, et al.Effects of rhizosphere soil chemicals on growth and quality of tea trees at different ages[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2149-2159. [8] 余继忠, 徐家明, 黄海涛, 等. 重修剪、台刈和改植换种三种茶园改造方式的比较[J]. 茶叶科学, 2008, 28(3): 221-227. Yu J Z, Xu J M, Huang H T, et al.Comparison on the different rehabilitation methods of heavy pruning, collar pruning and replanting[J]. Journal of Tea Science, 2008, 28(3): 221-227. [9] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力,酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39(5): 26-31. Wang H B, Chen X T, Ding L, et al.Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years[J]. Chinese Journal of Tropical Crops, 2018, 39(5): 26-31. [10] Arafat Y, Wei X Y, Jiang Y H, et al.Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems[J]. International Journal of Molecular Sciences, 2017, 18(8): 1727. doi: 10.3390/ijms18081727. [11] Arafat Y, Din I U, Tayyab M, et al.Soil sickness in aged tea plantation is associated with a shift in microbial communities as a result of plant polyphenol accumulation in the tea gardens[J]. Frontiers in Plant Science, 2020, 11: 601. doi: 10.3389/fpls.2020.00601. [12] 王海斌, 陈晓婷. 连作土壤对铁观音茶树生理特性的影响[J]. 农产品加工(上), 2015(10): 33-35. Wang H B, Chen X T.Effect of Tieguanyin continue cropping soil on tea seeding physiological characteristics[J]. Academic Periodical of Farm Products Processing, 2015(10): 33-35. [13] Yang Y R, Kim J Y, Chung J O, et al.Variations in the composition of tea leaves and soil microbial community[J]. Plant and Soil, 2022, 58: 167-179. [14] Tang S, Zhou J J, Pan W K, et al.Impact of N application rate on tea ( [15] Liu C, Wang S, Yan J, et al.Soil fungal community affected by regional climate played an important role in the decomposition of organic compost[J]. Environmental Research, 2021, 197(315): 111076. doi: 10.1016/j.envres. 2021.111076. [16] Wang Z T, Chen Q, Liu L, et al.Responses of soil fungi to 5-year conservation tillage treatments in the drylands of northern China[J]. Applied Soil Ecology, 2016, 101: 132-140. [17] Tedersoo L, Bahram M, Põlme S, et al.Global diversity and geography of soil fungi[J]. Science, 2014, 36: 6213. doi: 10.1126/science.1256688. [18] Morrison-Whittle P, Lee S A, Goddard M R.Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems[J]. Agriculture, Ecosystems Environment, 2017, 246: 306-313. [19] Tsiafouli M A, Thébault E, Sgardelis S P, et al.Intensive agriculture reduces soil biodiversity across Europe[J]. Global Change Biology, 2015, 21: 973-985. [20] Li H X, Cai X X, Gong J Y, et al.Long-term organic farming manipulated rhizospheric microbiome and bacillus antagonism against pepper blight ( 2019.00342. [21] Peltoniemi K, Velmala S, Fritze H, et al.Long-term impacts of organic and conventional farming on the soil microbiome in boreal arable soil[J]. European Journal of Soil Biology, 2021, 21: 103314. doi: 10.1016/j.ejsobi.2021.103314. [22] Uzman D, Pliester J, Leyer I, et al.Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils[J]. Applied Soil Ecology, 2019, 133: 89-97. [23] Bell L W, Sparling B, Tenuta M, et al.Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland[J]. Agriculture Ecosystems Environment, 2012, 158(3): 156-163. [24] Alegbeleye O O, Sant'Ana A S. Manure-borne pathogens as an important source of water contamination: an update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies[J]. International Journal of Hygiene and Environmental Health, 2020, 227(11): 113524. doi: 10.1016/j.ijheh.2020.113524. [25] Wang W H, Wang H, Feng Y Z, et al.Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River[J]. Scientific Reports, 2016, 6: 35046. doi: 10.1038/srep35046. [26] Wu T, Liu W, Wang D, Zou Y K, et al.Organic management improves soil phosphorus availability and microbial properties in a tea plantation after land conversion from longan ( [27] 何燕, 李廷轩, 王永东. 低山丘陵区不同坡位茶园土壤肥力特征研究[J]. 中国生态农业学报, 2009, 17(4): 661-666. He Y, Li T X, Wang Y D.Soil fertility in tea plantations in different slope positions and elevation regions[J]. Chinese Journal of Eco-Agriculture, 2009, 17(4): 661-666. [28] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K.Analysis method in soil agricultural chemistry [M]. Beijing: China Agricultural Scientech Press, 2000. [29] Nguyen N H, Song Z W, Bates S, et al.Fun guild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248. [30] Kazerooni E A, Maharachchikumbura S, Velazhahan R, et al.Fungal diversity in Tomato rhizosphere soil under conventional and desert farming systems[J]. Frontiers in Microbiology, 2017, 8: 1462. doi.org/10.3389/fmicb.2017.01462. [31] Karlsson I, Friberg H, Kolseth A K, et al.Organic farming increases richness of fungal taxa in the wheat phyllosphere[J]. Molecular Ecology, 2017, 26: 3424-3436. [32] Schlatter D C, Schillinger W F, Bary A I, et al.Biosolids and conservation tillage: impacts on soil fungal communities in dryland wheat-fallow cropping systems[J]. Soil Biology Biochemistry, 2017, 115: 556-567. [33] Li Y, Zhang Q P, Cai Y J, et al.Minimum tillage and residue retention increase soil microbial population size and diversity: implications for conservation tillage[J]. The Science of the Total Environment, 2020, 716: 137164. doi.org/10.1016/j.scitotenv.2020.137164. [34] Wang Z, Zhang Q, Staley C, et al.Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability[J]. Biology and Fertility of Soils, 2019, 55: 121-134. [35] 周泉, 王龙昌, 邢毅, 等. 间作紫云英下油菜根际土壤微生物群落功能特征[J]. 应用生态学报, 2018, 29(3): 909-914. Zhou Q, Wang L C, Xing Yi, et al.Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 909-914. [36] Zhang H L, Zheng X Q, Bai N L, et al.Responses of soil bacterial and fungal communities to organic and conventional farming systems in East China[J]. Journal of microbiology and biotechnology, 29(3): 441-453. [37] Geel V M, Verbruggen E, Beenhouwer D M, et al.High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards[J]. Agriculture Ecosystems Environment, 2017, 248: 144-152. [38] 姚雪玲, 傅伯杰, 吕一河. 黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J]. 生态学报, 2012, 32(16) : 4961-4968. Yao X L, Fu B J, Lü Y H.Spatial patterns of soil moisture at transect scale in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2012, 32(16): 4961-4968. [39] 赵炯昌, 卫伟, 段兴武. 模拟降雨下黄土坡面水沙过程对3种灌草植被垂直结构变化的响应[J]. 生态学报, 2021, 41(21): 8602-8611. Zhao J C, Wei W, Duan X W.Response of the runoff and sediment process on loess slope to the vertical structure changes of three shrub and grass vegetations under simulated rainfall[J]. Acta Ecologica Sinica, 2021, 41(21): 8602-8611. [40] Manoeli L, Korthals G W, Mattias D H, et al.Soil microbiome is more heterogeneous in organic than in conventional farming system[J]. Frontiers in Microbiology, 2016, 7: 2064. doi: 10.3389/fmicb.2016.02064. [41] Hu L, Robert C, Selma C, et al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9: 2738. doi: 10.1038/s41467-018-05122-7. [42] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12-22. Yang Z, Dai C C, Wang X X, et al.Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 2019, 56(1): 12-22. [43] Li Y Y, Feng J, Zheng L, et al.Intercropping with marigold promotes soil health and microbial structure to assist in mitigating tobacco bacterial wilt[J]. Journal of Plant Pathology, 2020, 102: 731-742. [44] Van Wees S C, Van der Ent S, Pieterse C M. Plant immune responses triggered bybeneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11: 443-448. [45] Soman A G, Gloer J B, Wicklow D T.Antifungal and antibacterial metabolites from a sclerotium-colonizing isolate of [46] Maharachchikumbura S, Guo L D, Liu Z Y, et al. [47] Voglmayr H, Rossman A Y, Castlebury L A, et al.Multigene phylogeny and taxonomy of the genus [48] Anthony M A, Frey S D, Stinson K A.Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion[J]. Ecosphere, 2017, 8(9): e01951. doi.org/10.1002/ecs2.1951. [49] 黄兰婷, 倪浩为, 李新宇, 等. 典型红壤水稻土剖面细菌和真菌分子生态网络特征研究[J]. 土壤学报, 2021, 58(4): 1018-1027. Huang L T, Ni H W, Li X Y, et al.Molecular ecological network of bacteria and fungi in paddy soil of typical red soil[J]. Acta Pedologica Sinica, 2021, 58(4): 1018-1027. [50] Zhou Z H, Wang C K, Luo Y Q, et al.Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 1-10. [51] Mushinski R M, Gentry T J, Bouttona T W.Organic matter removal associated with forest harvest leads to decade scale alterations in soil fungal communities and functional guilds[J]. Soil Biology and Biochemistry, 2018, 127: 127-136. [52] Du C, Geng Z C, Wang Q, et al.Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest[J]. Journal of Microbiology, 2017, 55(9): 684-693. [53] Lauber C L, Hamady M, Knight R, et al.Pyrosequencing- based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. [54] Li Y C, Li Z W, Arafat Y, et al.Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing[J]. Annals of Microbiology, 2020, 70(7): 1-12. [55] Chen B B, Jiao S, Luo S W, et al.High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau[J]. Environmental Microbiology, 2021, 23(1): 464-477. [56] Liu M, Liu J, Jiang C Y, et al.Shifts in bacterial and fungal diversity in a paddy soil faced with phosphorus surplus[J]. Biology Fertility of Soils, 2018, 54: 259-267. [57] Lin X G, Feng Y Z, Zhang H Y, et al.Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north china revealed by 454 pyrosequencing[J]. Environmental Science Technology, 2012, 46(11): 5764-5771. [58] Li P F, Liu M, Li G L, et al.Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by ralstonia[J]. Environmental Microbiology, 2021, 23(10): 5992-6003. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | WU Jing, CHEN Nannan, HAN Menglin, CHEN Gao, LI Weiwei, ZHANG Shuxiang, JIANG Xiaolan. Isolation, Identification and Characterization of Aluminum-tolerant Growth-promoting Endophytic Bacteria in Tea Roots [J]. Journal of Tea Science, 2022, 42(5): 610-622. |
[3] | GAO Jianjian, CHEN Dan, PENG Jiakun, WU Wenliang, CAI Liangsui, CAI Yawei, TIAN Jun, WAN Yunlong, SUN Weijiang, HUANG Yan, WANG Zhe, LIN Zhi, DAI Weidong. Comparison on Chemical Components of Yunnan and Fuding White Tea Based on Metabolomics Approach [J]. Journal of Tea Science, 2022, 42(5): 623-637. |
[4] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[5] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[6] | LI Yanchun, WANG Hang, LI Zhaowei, YE Jing, WANG Yixiang. Ameliorative Effect of Several Measures on Soil Physicochemical Properties and Microbial Community Structures in Acidified Tea Gardens [J]. Journal of Tea Science, 2022, 42(5): 661-671. |
[7] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[8] | CHEN Yuhong, GAO Ying, HAN Zhen, YIN Junfeng. Analysis of the Saponin Contents and Composition in Tea Seeds of Different Germplasms [J]. Journal of Tea Science, 2022, 42(5): 705-716. |
[9] | CHEN Hui, YANG Liling, CHEN Jinhua, HUANG Jian'an, GONG Yushun, LI Shi. Effect of Temperature-controlled Pile-fermentation on Aroma Quality of Primary Dark Tea [J]. Journal of Tea Science, 2022, 42(5): 717-730. |
[10] | CHEN Ke, WANG Yuanzhu, YANG Xiaoying, ZHANG Dongying, ZHU Qiangqiang. Preparation of Nanoparticules with Chitosan Complexed β-lactoglobulin Loaded EGCG and their Effects on Blood Glucose in Diabetic Mice [J]. Journal of Tea Science, 2022, 42(5): 731-739. |
[11] | LI Zheng, LIU Ding, HUO Zenghui, CHEN Fuqiao. Analysis on the Competitiveness and Complementarity of Tea Trade between China and RCEP Members [J]. Journal of Tea Science, 2022, 42(5): 740-752. |
[12] | YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials [J]. Journal of Tea Science, 2022, 42(4): 447-462. |
[13] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[14] | LI Jing, LIN Cairong, HUANG Yan, DENG Xuming, WANG Yiqing, SUN Weijang. Effects of Tea Polyphenols on Agrobacterium-mediated Plant Genetic Transformation System [J]. Journal of Tea Science, 2022, 42(4): 477-490. |
[15] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|