[1] Xiang P, Zhu Q F, Tukhvatshin M, et al.Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21: 478. doi: 10.1186/s12870-021-03260-7.
[2] 田月月, 张丽霞, 张正群, 等. 夏秋季遮光对山东黄金芽茶树生理生化特性的影响[J]. 应用生态学报, 2017, 28(3): 789-796.
Tian Y Y, Zhang L X, Zhang Q Z, et al.Effects of shading in summer and autumn on physiological and biochemical characteristics of 'Huangjinya' in Shandong Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 789-796.
[3] 王峰, 陈玉真, 王秀萍, 等. 不同品种茶树叶片功能性状及光合特性的比较[J]. 茶叶科学, 2016, 36(3): 285-292.
Wang F, Chen Y Z, Wang X P, et al.Comparison of leaf functional and photosynthetic characteristics in different tea cultivars[J]. Journal of Tea Science, 2016, 36(3): 285-292.
[4] 张娅, 施树倩, 李亚萍, 等. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性[J]. 应用生态学报, 2021, 32(12): 4381-4390.
Zhang Y, Shi S Q, Li Y P, et al.Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4381-4390.
[5] Ghotbi-Ravandi A A, Shahbazi M, Pessarakli M, et al. Monitoring the photosystem Ⅱ behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient[J]. Journal of Plant Nutrition, 2016, 39(8): 1174-1185.
[6] 王亚楠, 董丽娜, 丁彦芬, 等. 遮阴对4种紫堇属植物光合特性和叶绿素荧光参数的影响[J]. 应用生态学报, 2020, 31(3): 769-777.
Wang Y N, Dong L N, Ding Y F, et al.Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters of four Corydalis species[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 769-777.
[7] 林郑和, 钟秋生, 郝志龙, 等. 低氮对不同茶树品种叶绿素荧光特性的影响[J]. 茶叶科学, 2017, 37(4): 363-372.
Lin Z H, Zhong Q S, Hao Z L, et al.Effects of chlorophyll fluorescence parameters of different tea cultivars in response to low nitrogen[J]. Journal of Tea Science, 2017, 37(4): 363-372.
[8] 尧渝, 张厅, 马伟伟, 等. 不同间作模式对茶树光合生理及茶叶品质的影响[J]. 山西农业科学, 2016, 44(4): 470-473.
Yao Y, Zhang T, Ma W W, et al.Effects of different intercropping patterns on photosynthetic physiology characteristics of tea plants and tea quality[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(4): 470-473.
[9] Xia W, Li C L, Nie J, et al.Stable isotope and photosynthetic response of tea grown under different temperature and light conditions[J]. Food Chemistry, 2021, 338: 130771. doi: 10.1016/j.foodchem.2021.130771.
[10] 邹瑶, 陈盛相, 许燕, 等. 茶树光合特性季节性变化研究[J]. 四川农业大学学报, 2018, 36(2): 210-216.
Zou Y, Chen S X, Xu Y, et al.Seasonal changes of photosynthetic characteristics in tea cultivars[J]. Journal of Sichuan Agricultural University, 2018, 36(2): 210-216.
[11] 李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5): 415-422.
Li Z X, Li X, Fan L C, et al.Effect of heat stress on the photosynthesis system of tea leaves[J]. Journal of Tea Science, 2015, 35(5): 415-422.
[12] Oh S, Koh S C.Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field[J]. Horticulture Environment & Biotechnology, 2014, 55(5): 363-371.
[13] 王铭涵, 丁玎, 张晨禹, 等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020, 40(4): 478-491.
Wang M H, Ding D, Zhang C Y, et al.Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science, 2020, 40(4): 478-491.
[14] 谢文钢, 陈玮, 谭礼强, 等. 四川3个特色茶树品种芽叶性状及光合特性分析[J]. 茶叶科学, 2021, 41(6): 813-822.
Xie W G, Chen W, Tan L Q, et al.Analysis of bud and leaf characters and photosynthetic characteristics of three tea cultivars in Sichuan[J]. Journal of Tea Science, 2021, 41(6): 813-822.
[15] 张晨禹, 王铭涵, 高羲之, 等. 茶树‘湘妃翠’黄化枝光合生理与组织学[J]. 分子植物育种, 2019, 17(23): 7892-7900.
Zhang C Y, Wang M H, Gao X Z, et al.Photosynthetic physiological and histology in novel etiolated branch of the 'Xiangfeicui' tea plant (Camellia sinensis)[J]. Molecular Plant Breeding, 2019, 17(23): 7892-7900.
[16] Song L B, Ma Q P, Zou Z W, et al.Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’[J]. Frontiers in Plant Science, 2017, 24: 803. doi: 10.3389/fpls.2017. 00803.
[17] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6): 1983-1989.
Yang X M, Wu X L, Liu Y F, et al.Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1983-1989.
[18] Wang P J, Zheng Y C, Guo Y C, et al.Widely targeted metabolomic and transcriptomic analyses of a novel albino tea mutant of "Rougui"[J]. Forests, 2020, 11(2): 229. doi: 10.3390/f11020229.
[19] 赵艺璇, 孙桂芳, 杨建伟, 等. 不同品种矾根叶色表现与色素含量关系研究[J]. 林业与生态科学, 2019, 34(1): 93-96.
Zhao Y X, Sun G F, Yang J W, et al.Study of the relationship between leaf color performance and pigment content of Heuchera micrantha[J]. Forestry and Ecological Sciences, 2019, 34(1): 93-96.
[20] 高佳, 崔海岩, 史建国, 等. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响[J]. 应用生态学报, 2018, 29(3): 883-890.
Gao J, Cui H Y, Shi J G, et al.Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 883-890.
[21] Wang L, Yue C, Cao H L, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biology, 2014, 14(1): 352. doi: 10.1186/s12870-014-0352-x.
[22] 苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013: 57-59.
Cang J, Zhao H J.Expermental course of plant physiology [M]. Beijing: Higher Education Press, 2013: 57-59.
[23] Arnon D I.Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15.
[24] Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637-640.
[25] Strasser R J, Tsimilli-Michael M, Qiang S, et al.Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7): 1313-1326.
[26] 杨程, 李向东, 杜思梦, 等. 高温对冬小麦旗叶光合机构的伤害机制[J]. 中国生态农业学报(中英文), 2022, 30(3): 399-408.
Yang C, Li X D, Du S M, et al.Photosystem damage mechanism in flag leaves of winter wheat under high temperature[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 399-408.
[27] 徐冉, 侯和胜, 佟少明. 藻类叶绿素a/叶绿素b型捕光蛋白复合体结构与功能的研究进展[J]. 天津农业科学, 2016, 22(2): 31-34.
Xu R, Hou H S, Tong S M.Research progress of the Chl a/Chl b type light-harvesting complex protein in algae[J]. Tianjin Agricultural Sciences, 2016, 22(2): 31-34.
[28] Jiang X F, Zhao H, Guo F.et al.Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’[J]. BMC Plant Biology, 2020, 20: 216. doi: 10.1186/s12870-020-02425-0.
[29] Polívka T, Frank H A.Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125-1134.
[30] Liu B H, Liang J, Tang G M, et al.Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks[J]. Scientia Horticulturae, 2019, 250: 230-235.
[31] 周晓瑾, 黄海霞, 张君霞, 等. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83.
Zhou X J, Huang H X, Zhang J X, et al.Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings[J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83.
[32] 郑雪燕. 遮阴处理对粗肋草生长、光合特性和养分质量分数的影响[J]. 东北林业大学学报, 2022, 50(12): 31-36.
Zheng X Y.Effects of shading on the growth, photosynthetic characteristics and nutrient accumulation of Aglaonema commutatumd[J]. Journal of Northeast Forestry University, 2022, 50(12): 31-36.
[33] 薛惠云, 王素芳, 张新, 等. 基于快速叶绿素荧光参数的不同基因型棉花叶片衰老研究[J]. 中国生态农业学报(中英文), 2021, 29(5): 870-879.
Xue H Y, Wang S F, Zhang X, et al.The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 870-879.
[34] Yue C N, Wang Z H, Yang P X.Review: the effect of light on the key pigment compounds of photosensitive etiolated tea plant[J]. Botanical Studies, 2021, 62(1): 1-15.
[35] Li N N, Yang Y P, Ye J H.et al.Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2): 253-262.
[36] Wang L, Cao H L, Chen C S, et al.Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. Journal of Proteomics, 2016, 130: 160. doi: 10.1016/j.jprot.2015.08.019.
[37] Liu G F, Han Z X, Feng L, et al.Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production[J]. Scientific Reports, 2017, 7: 45062. doi: 10.1038/srep45062.
[38] 林馨颖, 王鹏杰, 杨如兴, 等. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845.
Lin X Y, Wang P J, Yang R X, et al.The albino mechanism of a new high theanine tea cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[39] Jahns P, Holzwarth A R.The role of the xanthophyll cycle and of lutein inphotoprotection of photosystem Ⅱ[J]. Biochimica et Biophysica Acta, 2012, 1817(1): 182-193.
[40] Xie X J, Lu X P, Wang L P, et al.High light intensity increases the concentrations of β-carotene and zeaxanthin in marine red macroalgae[J]. Algal Research, 2020, 47: 101852. doi: 10.1016/j.algal.2020.101852.
[41] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar 'Huangjinya'[J]. Environmental and Experimental Botany, 2019, 166: 103796. doi: 10.1016/j.envexpbot.2019.06.009.
[42] Strasser B J.Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research, 1997, 52(2): 147-155.
[43] 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系[J]. 植物生理学报, 2015, 51(6): 969-976.
Jin L Q, Che X K, Zhang Z S, et al.The Relationship between the Changes in Wk and different damage degree of PSⅡ donor side and acceptor side under high temperature with high light in cucumber[J]. Plant Physiology Journal, 2015, 51(6): 969-976.
[44] 李兰英, 尧渝, 龚雪蛟, 等. 茶树叶色黄化型新品种金凤1号选育研究[J]. 安徽农业科学, 2022, 50(19): 20-24.
Li L Y, Yao Y, Gong X J, et al.Breeding report of chlorosis-specific new tea plant variety Jinfeng 1[J]. Journal of Anhui Agricultural Sciences, 2022, 50(19): 20-24.
[45] Drop B, Webber-Birungi M, Yadav S N K, et al. Light-harvesting complex Ⅱ (LHCⅡ) and its supramolecular organization in Chlamydomonas reinhardtii[J]. Biochimica et Biophysica Acta, 2014, 1837(1): 63-72.
[46] Nelson N, Yocum C F.Structure and function of photosystems I and Ⅱ[J]. Annual Review of Plant Biology, 2006, 57: 521-565.
[47] Pokorska B, Zienkiewicz M, Powikrowska M, et al.Differential turnover of the photosystem Ⅱ reaction centre D1 protein in mesophyll and bundle sheath chloroplasts of maize[J]. Biochimica et Biophysica Acta, 2009, 1787(10): 1161-1169.
[48] Cai W H, Zheng X Q, Liang Y R.High-light-induced degradation of photosystem Ⅱ subunits’ involvement in the albino phenotype in tea plants[J]. International Journal of Molecular Sciences, 2022, 23(15): 8522. doi: 10.3390/ijms23158522.