Welcome to Journal of Tea Science,Today is
Research Paper

Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants

  • LIU Dongna ,
  • GONG Xuejiao ,
  • LI Lanying ,
  • HUANG Fan ,
  • YAO Yu ,
  • XU Yaqiong ,
  • GAO Yuan ,
  • LUO Fan
Expand
  • 1. Tea Research Institute of Sichuan Academy of Agricultural Science, Chengdu 610066, China;
    2. Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China

Received date: 2023-09-14

  Revised date: 2023-11-10

  Online published: 2024-01-08

Abstract

To facilitate the scientific assessment of germplasm evaluation and cultivation management of albino tea plants (Camellia sinensis L.), this study investigated the photosynthetic pigment contents, as well as the photosynthetic and chlorophyll fluorescence characteristics of three albino cultivars, with the normal tea cultivar ‘Fuding dabaicha’ (FD) as the control. The results show that (1) the total chlorophyll content of yellow tea leaves was 71.7%-86.8% lower than that of the control cultivar, and the total carotenoid content remained between 0.16 mg·g-1 and 0.31 mg·g-1. (2) The net photosynthetic rate (Pn), stomatal conductance (Gs), water use efficiency (WUE), the maximum net photosynthetic rate (Pn max), and light saturation point (LSP) of three albino tea cultivars were significantly decreased, and the optical compensation point (LCP) was significantly was than those of the control. (3) The photosynthetic processes of albino tea cultivars, such as absorption, transformation and consumption of light energy were significantly different from those of the control. Among them, the relative variable fluorescence at L and J points in the OJIP curve of albino tea cultivars ‘Jinfeng 2’ (JF2) and ‘Zhonghuang 1’ (ZH1) were significantly higher. Among the chlorophyll fluorescence kinetic parameters, MO, DIO/RC, φDO and φRO increased significantly, while FV/FO, ETO/RC, φPO, φEO, ΨEO and PIabs decreased significantly. Our study found that the photosynthetic efficiency, potential and ecological adaptability of albino tea leaves were significantly decreased. The significant reduction of photosynthetic pigment, the significant decrease of PSⅡ light capture and photosynthetic electron transfer efficiency, and the significant increase of heat dissipation energy were the considerable reasons for inhibition of photosynthetic performance in albino tea plants.

Cite this article

LIU Dongna , GONG Xuejiao , LI Lanying , HUANG Fan , YAO Yu , XU Yaqiong , GAO Yuan , LUO Fan . Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants[J]. Journal of Tea Science, 2023 , 43(6) : 757 -768 . DOI: 10.13305/j.cnki.jts.2023.06.002

References

[1] Xiang P, Zhu Q F, Tukhvatshin M, et al.Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21: 478. doi: 10.1186/s12870-021-03260-7.
[2] 田月月, 张丽霞, 张正群, 等. 夏秋季遮光对山东黄金芽茶树生理生化特性的影响[J]. 应用生态学报, 2017, 28(3): 789-796.
Tian Y Y, Zhang L X, Zhang Q Z, et al.Effects of shading in summer and autumn on physiological and biochemical characteristics of 'Huangjinya' in Shandong Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 789-796.
[3] 王峰, 陈玉真, 王秀萍, 等. 不同品种茶树叶片功能性状及光合特性的比较[J]. 茶叶科学, 2016, 36(3): 285-292.
Wang F, Chen Y Z, Wang X P, et al.Comparison of leaf functional and photosynthetic characteristics in different tea cultivars[J]. Journal of Tea Science, 2016, 36(3): 285-292.
[4] 张娅, 施树倩, 李亚萍, 等. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性[J]. 应用生态学报, 2021, 32(12): 4381-4390.
Zhang Y, Shi S Q, Li Y P, et al.Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4381-4390.
[5] Ghotbi-Ravandi A A, Shahbazi M, Pessarakli M, et al. Monitoring the photosystem Ⅱ behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient[J]. Journal of Plant Nutrition, 2016, 39(8): 1174-1185.
[6] 王亚楠, 董丽娜, 丁彦芬, 等. 遮阴对4种紫堇属植物光合特性和叶绿素荧光参数的影响[J]. 应用生态学报, 2020, 31(3): 769-777.
Wang Y N, Dong L N, Ding Y F, et al.Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters of four Corydalis species[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 769-777.
[7] 林郑和, 钟秋生, 郝志龙, 等. 低氮对不同茶树品种叶绿素荧光特性的影响[J]. 茶叶科学, 2017, 37(4): 363-372.
Lin Z H, Zhong Q S, Hao Z L, et al.Effects of chlorophyll fluorescence parameters of different tea cultivars in response to low nitrogen[J]. Journal of Tea Science, 2017, 37(4): 363-372.
[8] 尧渝, 张厅, 马伟伟, 等. 不同间作模式对茶树光合生理及茶叶品质的影响[J]. 山西农业科学, 2016, 44(4): 470-473.
Yao Y, Zhang T, Ma W W, et al.Effects of different intercropping patterns on photosynthetic physiology characteristics of tea plants and tea quality[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(4): 470-473.
[9] Xia W, Li C L, Nie J, et al.Stable isotope and photosynthetic response of tea grown under different temperature and light conditions[J]. Food Chemistry, 2021, 338: 130771. doi: 10.1016/j.foodchem.2021.130771.
[10] 邹瑶, 陈盛相, 许燕, 等. 茶树光合特性季节性变化研究[J]. 四川农业大学学报, 2018, 36(2): 210-216.
Zou Y, Chen S X, Xu Y, et al.Seasonal changes of photosynthetic characteristics in tea cultivars[J]. Journal of Sichuan Agricultural University, 2018, 36(2): 210-216.
[11] 李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5): 415-422.
Li Z X, Li X, Fan L C, et al.Effect of heat stress on the photosynthesis system of tea leaves[J]. Journal of Tea Science, 2015, 35(5): 415-422.
[12] Oh S, Koh S C.Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field[J]. Horticulture Environment & Biotechnology, 2014, 55(5): 363-371.
[13] 王铭涵, 丁玎, 张晨禹, 等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020, 40(4): 478-491.
Wang M H, Ding D, Zhang C Y, et al.Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science, 2020, 40(4): 478-491.
[14] 谢文钢, 陈玮, 谭礼强, 等. 四川3个特色茶树品种芽叶性状及光合特性分析[J]. 茶叶科学, 2021, 41(6): 813-822.
Xie W G, Chen W, Tan L Q, et al.Analysis of bud and leaf characters and photosynthetic characteristics of three tea cultivars in Sichuan[J]. Journal of Tea Science, 2021, 41(6): 813-822.
[15] 张晨禹, 王铭涵, 高羲之, 等. 茶树‘湘妃翠’黄化枝光合生理与组织学[J]. 分子植物育种, 2019, 17(23): 7892-7900.
Zhang C Y, Wang M H, Gao X Z, et al.Photosynthetic physiological and histology in novel etiolated branch of the 'Xiangfeicui' tea plant (Camellia sinensis)[J]. Molecular Plant Breeding, 2019, 17(23): 7892-7900.
[16] Song L B, Ma Q P, Zou Z W, et al.Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’[J]. Frontiers in Plant Science, 2017, 24: 803. doi: 10.3389/fpls.2017. 00803.
[17] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6): 1983-1989.
Yang X M, Wu X L, Liu Y F, et al.Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1983-1989.
[18] Wang P J, Zheng Y C, Guo Y C, et al.Widely targeted metabolomic and transcriptomic analyses of a novel albino tea mutant of "Rougui"[J]. Forests, 2020, 11(2): 229. doi: 10.3390/f11020229.
[19] 赵艺璇, 孙桂芳, 杨建伟, 等. 不同品种矾根叶色表现与色素含量关系研究[J]. 林业与生态科学, 2019, 34(1): 93-96.
Zhao Y X, Sun G F, Yang J W, et al.Study of the relationship between leaf color performance and pigment content of Heuchera micrantha[J]. Forestry and Ecological Sciences, 2019, 34(1): 93-96.
[20] 高佳, 崔海岩, 史建国, 等. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响[J]. 应用生态学报, 2018, 29(3): 883-890.
Gao J, Cui H Y, Shi J G, et al.Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 883-890.
[21] Wang L, Yue C, Cao H L, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biology, 2014, 14(1): 352. doi: 10.1186/s12870-014-0352-x.
[22] 苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013: 57-59.
Cang J, Zhao H J.Expermental course of plant physiology [M]. Beijing: Higher Education Press, 2013: 57-59.
[23] Arnon D I.Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15.
[24] Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637-640.
[25] Strasser R J, Tsimilli-Michael M, Qiang S, et al.Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7): 1313-1326.
[26] 杨程, 李向东, 杜思梦, 等. 高温对冬小麦旗叶光合机构的伤害机制[J]. 中国生态农业学报(中英文), 2022, 30(3): 399-408.
Yang C, Li X D, Du S M, et al.Photosystem damage mechanism in flag leaves of winter wheat under high temperature[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 399-408.
[27] 徐冉, 侯和胜, 佟少明. 藻类叶绿素a/叶绿素b型捕光蛋白复合体结构与功能的研究进展[J]. 天津农业科学, 2016, 22(2): 31-34.
Xu R, Hou H S, Tong S M.Research progress of the Chl a/Chl b type light-harvesting complex protein in algae[J]. Tianjin Agricultural Sciences, 2016, 22(2): 31-34.
[28] Jiang X F, Zhao H, Guo F.et al.Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’[J]. BMC Plant Biology, 2020, 20: 216. doi: 10.1186/s12870-020-02425-0.
[29] Polívka T, Frank H A.Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125-1134.
[30] Liu B H, Liang J, Tang G M, et al.Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks[J]. Scientia Horticulturae, 2019, 250: 230-235.
[31] 周晓瑾, 黄海霞, 张君霞, 等. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83.
Zhou X J, Huang H X, Zhang J X, et al.Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings[J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83.
[32] 郑雪燕. 遮阴处理对粗肋草生长、光合特性和养分质量分数的影响[J]. 东北林业大学学报, 2022, 50(12): 31-36.
Zheng X Y.Effects of shading on the growth, photosynthetic characteristics and nutrient accumulation of Aglaonema commutatumd[J]. Journal of Northeast Forestry University, 2022, 50(12): 31-36.
[33] 薛惠云, 王素芳, 张新, 等. 基于快速叶绿素荧光参数的不同基因型棉花叶片衰老研究[J]. 中国生态农业学报(中英文), 2021, 29(5): 870-879.
Xue H Y, Wang S F, Zhang X, et al.The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 870-879.
[34] Yue C N, Wang Z H, Yang P X.Review: the effect of light on the key pigment compounds of photosensitive etiolated tea plant[J]. Botanical Studies, 2021, 62(1): 1-15.
[35] Li N N, Yang Y P, Ye J H.et al.Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2): 253-262.
[36] Wang L, Cao H L, Chen C S, et al.Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. Journal of Proteomics, 2016, 130: 160. doi: 10.1016/j.jprot.2015.08.019.
[37] Liu G F, Han Z X, Feng L, et al.Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production[J]. Scientific Reports, 2017, 7: 45062. doi: 10.1038/srep45062.
[38] 林馨颖, 王鹏杰, 杨如兴, 等. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845.
Lin X Y, Wang P J, Yang R X, et al.The albino mechanism of a new high theanine tea cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[39] Jahns P, Holzwarth A R.The role of the xanthophyll cycle and of lutein inphotoprotection of photosystem Ⅱ[J]. Biochimica et Biophysica Acta, 2012, 1817(1): 182-193.
[40] Xie X J, Lu X P, Wang L P, et al.High light intensity increases the concentrations of β-carotene and zeaxanthin in marine red macroalgae[J]. Algal Research, 2020, 47: 101852. doi: 10.1016/j.algal.2020.101852.
[41] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar 'Huangjinya'[J]. Environmental and Experimental Botany, 2019, 166: 103796. doi: 10.1016/j.envexpbot.2019.06.009.
[42] Strasser B J.Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research, 1997, 52(2): 147-155.
[43] 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系[J]. 植物生理学报, 2015, 51(6): 969-976.
Jin L Q, Che X K, Zhang Z S, et al.The Relationship between the Changes in Wk and different damage degree of PSⅡ donor side and acceptor side under high temperature with high light in cucumber[J]. Plant Physiology Journal, 2015, 51(6): 969-976.
[44] 李兰英, 尧渝, 龚雪蛟, 等. 茶树叶色黄化型新品种金凤1号选育研究[J]. 安徽农业科学, 2022, 50(19): 20-24.
Li L Y, Yao Y, Gong X J, et al.Breeding report of chlorosis-specific new tea plant variety Jinfeng 1[J]. Journal of Anhui Agricultural Sciences, 2022, 50(19): 20-24.
[45] Drop B, Webber-Birungi M, Yadav S N K, et al. Light-harvesting complex Ⅱ (LHCⅡ) and its supramolecular organization in Chlamydomonas reinhardtii[J]. Biochimica et Biophysica Acta, 2014, 1837(1): 63-72.
[46] Nelson N, Yocum C F.Structure and function of photosystems I and Ⅱ[J]. Annual Review of Plant Biology, 2006, 57: 521-565.
[47] Pokorska B, Zienkiewicz M, Powikrowska M, et al.Differential turnover of the photosystem Ⅱ reaction centre D1 protein in mesophyll and bundle sheath chloroplasts of maize[J]. Biochimica et Biophysica Acta, 2009, 1787(10): 1161-1169.
[48] Cai W H, Zheng X Q, Liang Y R.High-light-induced degradation of photosystem Ⅱ subunits’ involvement in the albino phenotype in tea plants[J]. International Journal of Molecular Sciences, 2022, 23(15): 8522. doi: 10.3390/ijms23158522.
Outlines

/