To study the effects and mechanism of (+)-catechins ((+)-C) on hypoxia pulmonary arterial hypertension (PAH) in rats, twenty seven SD male rats were randomly divided into 3 groups with equalnumber (control group, hypoxia group and hypoxia+(+)-C group). Mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance (PVR) were measured to indicate the hemodynamic changes in vivo. After executing the rats, the right ventricle hypertrophy index (RVHI) and the vascular wall thickness of outer circumference ratio (WT%) were calculated. The expression of nitric oxide synthase (eNOS) and NO in pulmonary artery endothelial cells was analyzed by WB and NO kit respectively. Cellular viability of pulmonary arterial smooth muscle cell was determined by CCK-8 assay. The expression of calcium sensing receptor (CaSR) and total intracellular Ca2+ were analyzed by WB and fluorescent probe. The results showed that (+)-C could decrease the pulmonary arterial pressure induced by hypoxia (n=9, P<0.05). Increase eNOS in pulmonary endothelial cells (n=3, P<0.05) and increase NO synthesis in pulmonary endothelial cells (n=5, P<0.05). The expression of CaSR in smooth muscle cells induced by hypoxia was inhibited (n=3, P<0.05), while the calcium concentration was induced by (+)-C (n=27, P<0.05). Vascular smooth muscle cell proliferation was inhibited by (+)-C (n=30, P<0.05). In conclusion, (+)-C can alleviate hypoxia induced PAH by inhibiting pulmonary vasoconstriction and vascular smooth muscle cell proliferation, providing a new approach for the treatment of PAH.
YAN Junjie
,
CHEN Fangzheng
,
CHEN Luowei
,
WANG Heng
,
HUANG Jingwen
,
JIN Lufei
,
XU Yuhui
,
YUAN Linbo
. The Effect and Mechanism of (+)-Catechins on Relieving Hypoxic Pulmonary Hypertension in Rats[J]. Journal of Tea Science, 2019
, 39(1)
: 55
-62
.
DOI: 10.13305/j.cnki.jts.2019.01.006
[1] Masri FA, Xu W, Comhair SA, et al.Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3): 548-554.
[2] 徐东江, 朱广瑾. 几种肺动脉高压相关因子的研究进展[J]. 中国病理生理杂志, 2010, 26(4): 819-822.
[3] Tan X, Feng L, Huang X, et al.Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth[J]. Journal of Cellular & Molecular Medicine, 2017, 21(9): 2022-2035.
[4] Colella M, Gerbino A, Hofer AM, et al.Recent advances in understanding the extracellular calcium-sensing receptor [J]. F1000Res, 2016, 5(F1000 Faculty Rev): 2535. DOI:10.12688/f1000research.8963.1. Recent advances in understanding the extracellular calcium-sensing receptor [J]. F1000Res, 2016, 5(F1000 Faculty Rev): 2535. DOI:10.12688/f1000research.8963.1. http://dx.doi.org/10.12688/f1000research.8963.1.
[5] Yang J, Li X, Allamki RS, et al.Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo[J]. Circ Res, 2010, 107(2): 252-262.
[6] 刘超, 陈若芸. 儿茶素及其类似物的化学和生物活性研究进展[J]. 中国中药杂志, 2004, 29(10): 1017-1021.
[7] 付静, 江海, 李新生. 超高效液相色谱法测定绿茶中5种儿茶素[J]. 分析试验室, 2013, 32(7): 75-80.
[8] Breen EC, Scadeng M, Lai NC, et al. Functional magnetic resonance imaging for in vivo quantification of pulmonary hypertension in the Sugen5416/hypoxia mouse[J]. Exp Physiol, 2017, 102(3): 347-353. https://doi: 10.1113/EP086067.
[9] 陈丽英, 应可净, 黄斐斐, 等. 低氧性肺动脉高压大鼠模型的建立[J]. 中华危重症医学杂志(电子版), 2015(5): 312-314.
[10] 章琦, 胡立群, 尹长森, 等. 儿茶素对实验性大鼠心力衰竭模型的保护作用[J]. 安徽医科大学学报, 2014(6): 764-767.
[11] 何小解, 易著文, 杨华彬, 等. 微胶囊化儿茶素对阿霉素肾病大鼠VEGF表达的影响[J]. 中国病理生理杂志, 2007, 23(8): 1570-1573.
[12] Afolayan AJ, Eis A, Alexander M, et al. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension [J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(1): L40-L49. https://doi.org/10.1152/ajplung.00392.2014.
[13] Firth AL, Remillard CV, Platoshyn O, et al.Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels[J]. Pulm Circ, 2011, 1(1): 48-71.
[14] Tang H, Yamamura A, Yamamura H, et al. Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension [J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(9): L846-L859. https://doi.org/10.1152/ajplung.00050.2016.
[15] Schreckenberg R, Schlüter KD.Calcium sensing receptor expression and signalling in cardiovascular physiology and disease[J]. Vascul Pharmacol, 2018, 107: 35-42. DOI: 10.1016/j.vph.2018.02.007.
[16] Peng X, Li HX, Shao HJ, et al.Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries[J]. Molecular & Cellular Biochemistry, 2014, 396(1/2): 87-98.
[17] Yamamura A, Yagi S, Ohara N, et al.Calcilytics enhance sildenafil-induced antiproliferation in idiopathic pulmonary arterial hypertension[J]. Eur J Pharmacol, 2016, 784: 15-21. DOI: 10.1016/j.ejphar.2016.04.059.