Welcome to Journal of Tea Science,Today is

Research Advance on β-Glucosidase of Tea Plant

  • ZHOU Hanchen ,
  • LEI Pandeng ,
  • DING Yong
Expand
  • Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshan 245000, China

Received date: 2015-08-13

  Online published: 2019-08-23

Abstract

All material metabolisms, energy transfer, growth and development in tea plant require the participation of enzymes, which are also of great importance for tea quality formation. β-glucosidase catalyzes the hydrolysis of tea glycoside precursors. The produced aroma substances are not only involved in plant defense reaction against diseases and pests, but also important for tea quality. The β-glucosidase of Camellia sinensis is highly similar to β-glucosidase gene family members of arabidopsis, rice and maize in expression sites, subcellular localization, protein structure and phylogenetic evolution. Under biotic and abiotic stresses, the β-glucosidase of Camellia sinensis is immediately induced in the early stage. This paper mainly focused on the bio-informatic and gene expression in tea plant studies of Camellia sinensis β-glucosidase. Meanwhile, the changes of β-glucosidase in tea processing were also reviewed.

Cite this article

ZHOU Hanchen , LEI Pandeng , DING Yong . Research Advance on β-Glucosidase of Tea Plant[J]. Journal of Tea Science, 2016 , 36(2) : 111 -118 . DOI: 10.13305/j.cnki.jts.2016.02.001

References

[1] 宛晓春. 茶叶生物化学 [M]. 3版. 北京: 中国农业出版社, 2003.
[2] Li Y, Yuan Y Y, Meeran S M, et al.Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells[J]. Molecular Cancer, 2010, 9: 274. DOI: 10.1186/1476-4598-9-274.
[3] Lin C H, Shen Y A, Hung P H, et al.Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines[J]. BMC Complementary and Alternative Medicine, 2012, 12(1): 220-222.
[4] 宛晓春, 李大祥, 张正竹, 等. 茶叶生物化学研究进展[J]. 茶叶科学, 2015, 35(1): 1-10.
[5] Henrissat B, Davies G.Structural and sequence-based classification of glycoside hydrolases[J]. Current Opinion in Structural Biology, 1997, 7(5): 637-44.
[6] Wang P T, Liu H, Hua H J, et al.A vacuole localized β-glucosidase contributes to drought tolerance in arabidopsis[J]. Chinese Science Bulletin, 2011, 56(33): 3538-3546.
[7] Yao J, Huot B C, Doddapaneni H, et al.Expression of a beta-glucosidase gene results in increased accumulation of salicylic acid in transgenic Nicotiana tabacum cv. Xanthi-nc NN genotype[J]. Plant Cell Reports, 2007, 26(3): 291-301.
[8] 陆建良, 林晨, 骆颖颖. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 11-16.
[9] 段云裳, 邹中伟, 成浩, 等. 茶叶β-葡萄糖苷酶的研究进展[J]. 中国茶叶, 2008, 30(6): 15-17.
[10] 黄瑜萍, 郭雅玲, 林瑜玲, 等. β-葡萄糖苷酶在茶叶加工过程中的研究进展[J]. 福建茶叶, 2015(2): 2-4.
[11] 王晓, 沈程文, 周跃斌. β-葡萄糖苷酶与茶增香及抗病虫害的研究进展[J]. 茶叶通讯, 2014, 41(4): 8-12.
[12] Ketudat-Cairns J R, Esen A. β-Glucosidases[J]. Cellular and Molecular Life Sciences, 2010, 67(20): 3389-3405.
[13] Rawat R, Gulati A.Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia sinensis (L.) O. Kuntze)[J]. European Food Research & Technology A, 2008, 226(6): 1241-1249.
[14] Morita K, Wakabayashi M, Kubota K, et al.Aglycone constituents in fresh tea leaves cultivated for green and black tea[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(4): 687-690.
[15] Verdoucq L, Morinière J, Bevan D R, et al.Structural determinants of substrate specificity in family 1 β-Glucosidases[J]. Journal of Biological Chemistry, 2004, 279(30): 31796-31803.
[16] 张正竹, 宛晓春, 坂田完三. 茶叶β-葡萄糖苷酶亲和层析纯化与性质研究[J]. 茶叶科学, 2005, 25(1): 16-22.
[17] Opassiri R, Pomthong B, Onkoksoong T, et al.Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 beta-glucosidase[J]. BMC Plant Biology, 2006, 6(1): 33. DOI: 10.1186/1471-2229-6-33.
[18] Sener A.Extraction, partial purification and determination of some biochemical properties of β-glucosidase from tea leaves (Camellia sinensis L.)[J]. Journal of Food Science & Technology, 2015. DOI: 10.1007/s13197-015-1915-z.
[19] Rodrigues M A, Teixeira R S, Ferreira-Leitão V S, et al. Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases[J]. Biotechnology for Biofuels, 2015, 8(1): 25. DOI: 10.1186/s13068-015-0215-1.
[20] Opassiri R, Cairns J R K, Akiyama T, et al. Characterization of a rice β-glucosidase genes highly expressed in flower and germinating shoot[J]. Plant Science, 2003, 165(3): 627-638.
[21] 李远华, 江昌俊, 余有本. 茶树β-葡萄糖苷酶基因mRNA的表达[J]. 南京农业大学学报, 2005, 28(2): 103-106.
[22] Xu Z, Escamilla-Trevino L, Zeng L H, et al.Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family1[J]. Plant Molecular Biology, 2004, 55(3): 343-367.
[23] Gómez-Anduro G, Ceniceros-Ojeda E A, Casados-Vázquez L E, et al. Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73)[J]. Plant Molecular Biology, 2011, 77: 159-183.
[24] Chivasa S, Ndimba B K, Simon W J, et al.Proteomic analysis of the arabidopsis thaliana cell wall[J]. Electrophoresis, 2002, 23(11): 1754-1765.
[25] Andréasson E, Jørgensen L B, Höglund A S, et al.Different myrosinase and idioblast distribution in arabidopsis and Brassica napus[J]. Plant Physiology, 2001, 127(4): 1750-1763.
[26] 李远华. 茶树β-葡萄糖苷酶基因克隆、表达和分布定位[D]. 合肥: 安徽农业大学, 2003.
[27] 费月. 与茶叶香气形成相关的三个内源糖苷酶基因的克隆和原核表达[D]. 合肥: 安徽农业大学, 2012.
[28] Henrissat B, Bairoch A.New families in the classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochemical Journal, 1993, 293(Pt3): 781-788.
[29] Jones P, Vogt T.Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers[J]. Planta, 2001, 213(2): 164-174.
[30] Turan Y.A pseudo-beta-glucosidase in Arabidopsis thaliana: correction by site-directed mutagenesis, heterologous expression, purification, and characterization[J]. Biochemistry Biokhimii?a, 2008, 73(8): 912-919. DOI: 10.1134/S0006297908080099.
[31] Yao M Z, Ma C L, Qiao T T, et al.Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers[J]. Tree Genetics & Genomes, 2012, 8(1): 205-220.
[32] Koornneef A, Pieterse C M J. Cross-talk in defense signaling[J]. Plant Physiology, 2008, 146: 839-844.
[33] Wang X, Zhou G X, Xiang C Y, et al.β-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants[J]. Chinese Science Bulletin, 2008, 53(1): 53-57.
[34] Babcock G D, Esen A.Substrate specificity of maize β-glucosidase[J]. Plant Science, 1994, 101(94): 31-39.
[35] Brzobohaty B, Moore I, Kristoffersen P, et al.Release of active cytokinin by a beta-glucosidase localized to the maize root meristem[J]. Science, 1993, 262(5136): 1051-1054.
[36] Kwang Hee L, Lan P H, Ho-Youn K, et al.Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid[J]. Cell, 2006, 126(6): 1109-1120.
[37] Han Y J, Cho K C, Hwang O J, et al.Overexpression of an Arabidopsis β-glucosidase gene enhances drought resistance with dwarf phenotype in creeping bentgrass[J]. Plant Cell Reports, 2012, 31(9): 1677-1686.
[38] Nagar P K, Kumar A.Changes in endogenous gibberellin activity during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Acta Physiologiae Plantarum, 2000, 22(4): 439-443.
[39] Shi J, Wang L, Cheng-Ying M A, et al. Aroma changes of black tea prepared from methyl jasmonate treated tea plants[J]. Journal of Zhejiang University: science b, 2014, 15(4): 313-321.
[40] Kawasaki S, Borchert C, Deyholos M, et al.Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell, 2001, 13(4): 889-905.
[41] Yamamoto S, Nakano T, Suzuki K, et al.Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco[J]. Biochimica et Biophysica Acta Gene Structure and Expression, 2004, 1679(3): 279-287.
[42] Nicky J Atkinson, Catherine J Lilley, Peter E Urwin, et al.Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses[J]. Plant Physiology, 2013, 162: 2028-2041.
[43] Frisch T, Agerbirk N, Davis S, et al.Glucosinolate-related glucosides in Alliaria petiolata: sources of variation in the plant and different metabolism in an adapted specialist herbivore, Pieris rapae[J]. Journal of Chemical Ecology, 2014, 40(10): 1063-1079.
[44] Takeo T.Variation in amounts of linalol and geraniol produced in tea shoots by mechanical injury[J]. Phytochemistry, 1981, 20(9): 2149-2151.
[45] Rasmann S, Köllner T G, Degenhardt J, et al.Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 2005, 434(7034): 732-737.
[46] 王瑾, 戚丽, 张正竹. 真菌侵染引发的茶树内源糖苷酶基因差异表达[J]. 植物学报, 2011, 46(5): 552-559.
[47] Mageroy M H, Parent G, Germanos G, et al.Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm[J]. Plant Journal for Cell & Molecular Biology, 2015, 81(1): 68-80.
[48] Ballhorn D J, Heil M, Lieberei R.Phenotypic plasticity of cyanogenesis in lima bean Phaseolus lunatus-activity and activation of beta-glucosidase[J]. Journal of Chemical Ecology, 2006, 32(2): 261-275.
[49] Gohain B, Borchetia S, Bhorali P, et al.Understanding Darjeeling tea flavour on a molecular basis[J]. Plant Molecular Biology, 2012, 78(6): 577-597.
[50] Yang Z, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.
[51] 张正竹, 宛晓春, 施兆鹏, 等. 鲜茶叶摊放过程中呼吸速率、β-葡萄糖苷酶活性、游离态香气和糖苷类香气前体含量的变化[J]. 植物生理学通讯, 2003, 39(2): 134-136.
[52] 刘莉华, 宛晓春, 文勇, 等. 祁门红茶加工过程中β-葡萄糖苷酶活性变化研究[J]. 安徽农业大学学报, 2003, 30(4): 386-389.
[53] 丰金玉, 刘昆言, 秦昱, 等. 红茶加工中多酚氧化酶、过氧化物酶和β-葡萄糖苷酶活性变化[J]. 农学学报, 2014, 4(11): 96-99.
Outlines

/