Welcome to Journal of Tea Science,Today is

Contents of Glomalin-related Soil Protein and Its Correlations with Soil Factors in the Rhizosphere of Tea Plant [Camellia Sinensis(L.) O. Kuntze]

  • GAO Xiubing ,
  • XING Dan ,
  • CHEN Yao ,
  • ZHOU Fuyu ,
  • ZHAO Huafu ,
  • CHEN Juan ,
  • GUO Can ,
  • ZHOU Yufeng
Expand
  • 1. Tea Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550006, China;
    2. Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550006, China

Received date: 2015-09-21

  Online published: 2019-08-23

Abstract

Glomalin-related soil protein (GRSP) is a kind of glycoprotein containing metal ions that are secreted by arbuscular mycorrhizal fungi (AMF). It plays an important role in maintaining physiological functions of AMF and stabilization of soil organic carbon and soil aggregate. In this paper, the contents of GRSP and its correlations with soil factors were analyzed in the rhizosphere of tea plant [Camellia Sinensis(L.) O. Kuntze]. Total glomalin-related soil protein (T-GRSP) and easily extractable glomalin-related soil protein (EE-GRSP) as well as soil factors were investigated by Bradford and conventional soil factors analysis method in four key tea planting areas (Meitan county Shiqian county Guiding county and Douyun city) of Guizhou province southwest China. The results showed that GRSP levels were dependent on both rhizospheres of different tea cultivars and planting areas. The range of T-GRSP and EE-GRSP were 5.71-22.84 mg·g-1 and 2.35-7.91 mg·g-1; with average of 12.96 mg·g-1 and 4.88 mg·g-1 respectively. Correlation analysis showed that T-GRSP was significant positive correlation with hydrolysable nitrogen (Nh); organic matter (OM) and available potassium (Pa). EE-GRSP was positive correlated with Nh Pa and OM but negative correlated with soil pH. The result of multiple linear regression equation showed that different soil factors showed different impact on the content of T-GRSP and EE-GRSP. For T-GRSP: Nh > Pa > OM. For EE-GRSP: OM > Pa. These results showed the GRSP was remarkably abundant in the rhizosphere of tea plant and closely related with soil factors; so the content of GRSP may be an appropriate index for evaluating soil quality in tea garden.

Cite this article

GAO Xiubing , XING Dan , CHEN Yao , ZHOU Fuyu , ZHAO Huafu , CHEN Juan , GUO Can , ZHOU Yufeng . Contents of Glomalin-related Soil Protein and Its Correlations with Soil Factors in the Rhizosphere of Tea Plant [Camellia Sinensis(L.) O. Kuntze][J]. Journal of Tea Science, 2016 , 36(2) : 191 -200 . DOI: 10.13305/j.cnki.jts.2016.02.010

References

[1] Li XL, George E, Marschner H.Extension of the phosphorus depletion zone in a VA mycorrhizal white clover in a calcareous soil[J]. Plant Soil, 1991, 136(1): 41-48.
[2] Hamel C.Prospects and problems pertaining to the management of arbuscolar mycorrhizae in agriculture[J]. Agriculture, Ecosystems and Environment, 1996, 60(2): 197-210.
[3] Auge RM.Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001, 11(1): 3-42.
[4] WU Qiang-sheng, XIA Ren-xue, ZOU Ying-ning, et al.Effects of arbuscular mycorrhizal fungi on the growth and antioxidants enzymes of micropropagated citrus[J]. Chinese Journal of Applied & Environmental Biology, 2006, 12(5): 635-639.
[5] Driver J D, Holben W E, Rillig M C.Characterization of glomalin as a hyphal wall component of arbuscular mvcorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(1): 101-l06.
[6] Wright S F, Upadhyaya A.Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161(9): 575-586.
[7] Wright S F, Upadhyaya A.A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97-107.
[8] Rillig M C, Allen M F.What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO2?[J]. Mycorrhiza, 1999, 9: 1-8.
[9] Rillig M C, Wright S F, Nichols K A, et al.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001, 233(2): 167-177.
[10] Rillig M C, Maestre F T, Lamit L J.Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid mediterranean steppes[J]. Soil Biology Biochemistry, 2003, 35(9): 1257-1260.
[11] Rillig MC.Arbuscular mycorrhizae and terrestrial ecosystem processes[J]. Ecol Letters, 2004, 7(8): 740-754.
[12] Tunstall A C.Mycorrhiza in the plants[J]. Indian Tea Asso sci Dep Quart, 1925: 159.
[13] 李名君, 束际林. 茶树菌根的研究[J]. 中国茶叶, 1984, 6(4): 18-19.
[14] 季瑞琰, 周隆义. 茶树VA菌根菌的形态学观察[J]. 茶业通报, 1989, 11(3): 24-26.
[15] 吴铁航, 郝文英, 林先贵, 等. 红壤中VA菌根真菌(球囊霉目)的种类和生态分布[J]. 真菌学报, 1995, 14(2): 81-85.
[16] 卢东升, 吴小芊. 豫南茶园VA菌根真菌种类研究[J]. 南京林业大学学报: 自然科学版, 2005, 29(3): 33-36.
[17] 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根围AM真菌多样性[J]. 生物多样性, 2009, 17(5): 499-505.
[18] 钟凯, 唐超, 张曦, 李敏. 崂山植被根围丛枝菌根真菌多样性初步调查[J]. 青岛农业人学学报: 自然科学版, 2010, 27(4): 269-273.
[19] 林先贵, 郝文英. 不同植物对VA菌根的依赖性[J]. 植物学报, 1989, 31(9): 721-725.
[20] 任明兴, 骆耀平. 茶树VA菌根的研究进展[J]. 茶叶, 2005, 31(1): 28-31.
[21] 高秀兵, 陈娟, 郭灿, 等. 茶树丛枝菌根真菌的研究进展[J]. 贵州农业科学, 2011, 9: 122-126.
[22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[23] 韩文炎, 阮建云, 林智, 等. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-74, 65.
[24] 邓万刚, 吴蔚东, 林钊沐, 等. 胶园球囊霉素相关土壤蛋白质及有机质特征[J]. 中国农学通报, 2010, 26(16): 195-198.
[25] Lovelock C E, Wright S F, Clark D A, et al.Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. J Ecol, 2004, 92(2): 278-287.
[26] 冯欣欣, 唐明, 龚明贵, 等. 黄土高原狼牙刺丛枝菌根与球囊霉素的空间分布[J]. 西北农林科技大学学报: 自然科学版, 2011, 3(6): 96-102.
[27] 谢靖, 唐明. 黄土高原紫穗槐丛枝菌根真菌与土壤因子和球囊霉素空间分布的关系[J]. 西北植物学报, 2012, 32(7): 1440-1447.
[28] 贺学礼, 陈程, 何博. 北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布[J]. 生态学报, 2011, 31(6): 1653-1661.
[29] 陈颖, 贺学礼, 山宝琴, 等. 荒漠油篙根围AM真菌与球囊霉素的时空分布[J]. 生态学报, 2009, 29(11): 6010-6016.
[30] Rosier C L, Hoye A T, Rillig M C.Glomalin-related soil protein: Assessment of current detection and quantification tools[J]. Soil Biology and Biochemistry, 2006, 38(8): 2205-2211.
[31] Wright S F, Upadhyaya A.Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyhal traps[J]. Mycorrhizal, 1999, 8(5): 283-285.
[32] 田慧, 刘晓蕾, 盖京苹, 等. 球囊霉素及其作用研究进展[J]. 土壤通报, 2009, 40(5): 1215-1219.
[33] Rausch C, Daram P, Brunner S, et al.A phosphate transporter expressed in arbuscular-containing cells in potato[J]. Nature, 2001, 414(6862): 462-470.
[34] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000: 158-159.
[35] Wilson GWT, Rice CW, Rillig MC, et al.Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizalfungi: results from long-term field experiments[J]. Ecology Letters, 2009, 12(5): 452-461.
[36] Bedini S, Pellegrino E, Avio L, et al.Changes in soil aggregation and glomalin-relatedsoil protein content as affected by the arbuscul ar mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41(7): 1491-1496.
[37] 孙瑞莲, 朱鲁生, 赵炳强, 等. 长期施肥对土壤微生物的影响及其在养分调控中的作用[J]. 应用生态学报, 2004, 15(10): 1907-1910.
[38] 张小琴, 陈娟, 高秀兵, 等. 贵州重点茶区茶园土壤pH值和主要养分分析[J]. 西南农业学报, 2015, 28(1): 286-291.
[39] Bonser A, Lynch J P, Snapp S.Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132(2): 281-288.
[40] 唐宏亮, 刘龙, 王莉, 等. 土地利用方式对球囊霉素土层分布的影响[J]. 中国生态农业学报, 2009, 17(6): 1137-1142.
Outlines

/