Welcome to Journal of Tea Science,Today is

The Vertical Characteristics of Soil Humus in Different Soil Types of Tea Garden

  • WANG Feng ,
  • CHEN Yuzhen ,
  • YOU Zhiming ,
  • WU Zhidan ,
  • JIANG Fuying ,
  • WENG Boqi ,
  • ZHANG Wenjin
Expand
  • 1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an 355015, China;
    2. Agriculture Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

Received date: 2014-11-06

  Revised date: 2015-01-29

  Online published: 2019-08-23

Abstract

Based on the field survey and laboratory analysis, the soil humus composition in five soil types (yellow soil, red earth, moisture sandy soil, alpine meadow soil and purple soil) of tea garden in Wuyishan city were investigated. The results showed that the content of humic acid(HA), fulvic acid(FA) and Humin(HM) decreased with the soil depth. There were significant differences of humus composition among different soil types. The humus composition and carbon level in alpine meadow soil of tea garden were significantly higher than those in other soil types, followed by those in yellow soil and purple soil, the lowest was in red soil. Humin was the main composition of humus(57.06%-79.76%). Except alpine meadow soil, the proportion FA were more than those in HA. The △log K and E4/E6 value of FA was higher than HA. The △log K and E4/E6 value in alpine meadow soil and red soil were the lowest and highest, respectively. The soil humus composition were significantly correlated with soil organic carbon and phenol contents, total N, soil bulk density and soil porosity, but no significant correlated with C/N, pH value and soil moister. Thus, the major type of humus was humin in all five kinds of tea garden soils,alpine meadow soil belonged to the humic acid type soil, and others belonged to fulvic acid enriched soil.

Cite this article

WANG Feng , CHEN Yuzhen , YOU Zhiming , WU Zhidan , JIANG Fuying , WENG Boqi , ZHANG Wenjin . The Vertical Characteristics of Soil Humus in Different Soil Types of Tea Garden[J]. Journal of Tea Science, 2015 , 35(3) : 263 -270 . DOI: 10.13305/j.cnki.jts.2015.03.009

References

[1] 常庆瑞, 雷梅, 阎湘. 秦岭北坡垂直带谱土壤腐殖质特性研究[J]. 西北农业大学学报, 1997, 25(4): 39-44.
[2] 张晋京, 窦森, 李翠兰. 土壤腐殖质分组研究[J]. 土壤通报, 2004, 35(6): 706-709.
[3] 党亚爱, 李世清, 王国栋. 黄土高原典型区域土壤腐殖酸组分剖面分布特征[J]. 生态学报, 2012, 32(6): 1820-1829.
[4] 王晶, 何忠俊, 王立东, 等. “三江并流区”不同类型土壤腐殖质特性的研究[J]. 云南农业大学学报, 2010, 25(5): 659-663.
[5] M athieu P, Alien D, Melanie D. Dynamic structure of humic substances:Rare earth elements as a finger print[J]. Journal of Colloid and Interface Science, 2010, 34(5): 206-213.
[6] 马世五, 高雪松, 邓良基, 等. 不同母质发育的紫色水稻土腐殖质分布特征[J]. 山地学报, 2008, 26(1): 46-52.
[7] 王清奎, 范冰, 徐广标. 亚热带地区阔叶林与杉木林土壤活性有机质比较[J]. 2009, 20(7): 1536-1542.
[8] Dergacheva M I, Ondar E E, Zakharova E G.Humus profiles of mountain-chestnut soils of a complex catena in Central Tuva[J]. Contemporary Problems of Ecology, 2010, 3(3): 299-304.
[9] 王晶, 何忠俊, 王立东, 等. 高黎贡山土壤腐殖质特性与团聚体数量特征研究[J]. 土壤学报, 2010, 47(4): 723-733.
[10] 王景燕, 龚伟, 胡庭兴. 川南坡地不同退耕模式对土壤腐殖质及团聚体碳和氮的影响[J]. 水土保持学报, 2012, 26(2): 55-161.
[11] 蔡晓布, 彭岳林, 魏素珍, 等. 高寒草原土壤有机碳与腐殖质碳变化及其微生物效应[J]. 2014, 51(4):166-176.
[12] 古小治, 章钢娅, 俞元春, 等. 滨海水稻土腐殖质的组成及随种稻时间演变的研究初报[J]. 土壤学报, 2008, 45(4): 635-640.
[13] 马力, 杨林章, 慈恩, 等. 长期施肥条件下水稻土腐殖质组成及稳定性碳同位素特性[J]. 应用生态学, 2008, 19(9): 1951-1958.
[14] 钟成林, 刘晓艳, 张新颖, 等. 吴淞口近岸湿地沉积物中腐殖质的组成特征[J].上海大学学报: 自然科学版, 2012, 18(4): 408-412.
[15] 杨继松, 于君宝, 刘景双, 等. 三江平原典型湿地土壤腐殖质的剖面分布及其组成特征[J]. 土壤通报, 2006, 37(5): 865-868.
[16] 农业部种植业管理司. 2013年全国茶园面积、产量、产值统计[J]. 茶叶科学, 2014, 34(3): 296.
[17] 何淑勤, 郑子成, 杨玉梅. 茶园土壤团聚体分布特征及其对有机碳含量影响的研究[J]. 水土保持学报, 2009, 23(5): 187-190, 199.
[18] 丁瑞兴, 黄骁. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[J].土壤学报, 1991, 28(3): 229-237.
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-194.
[20] Kumada K, Sato O, Ohsumi Y, et al. Humus composition of mountain soils in central Japan with special reference to the distribution P type humic acid[J]. Soil Science and Plant Nutrition, 1967, 13(5): 151-158.
[21] 关松. 特定培养条件下土壤腐殖质形成与转化的研究[D]. 吉林: 吉林农业大学, 2005: 11-12.
[22] 王帅, 窦森, 王晓平, 等. 真菌及混合菌对玉米秸秆类腐殖质形成和转化的影响[J]. 农业环境科学学报, 2012, 31(4): 773-779.
[23] 盛炜彤, 杨承栋, 范少辉. 杉木人工林的土壤性质变化[J]. 林业科学研究, 2003, 16(4): 377-385.
[24] 褚慧, 宗良纲, 汪张鳃, 等. 不同种植模式下菜地土壤腐殖质组分特性等动态变化[J]. 土壤学报, 2013, 50(5): 86-93.
[25] Richard C, Guyot G, Aguer J P, et al. Role of fractionation in studying the photochemical properties of humic substances[J]. Russian Journal of General Chemistry, 2008, 78(11): 2265-2272.
[26] 李玉琴, 夏建国. 土地利用方式对川西低山区土壤腐殖质组成以及结合形态的影[J]. 2008, 36(6): 2441-2444.
[27] 宋木兰, 钱晓荣. 苏皖南部丘陵茶园土壤的腐殖质组成及性质的研究[J]. 南京农业大学学报, 1986(4): 75-81.
[28] 沈永明, 杨劲松, 曾华, 等. 互花米草盐沼湿地土壤腐殖质的空间分布特征[J]. 农业环境科学学宝, 2008, 27(6): 2279-2284.
[29] 罗应刚, 林清, 王观远, 等. 南宁市郊不同类型土壤腐殖质垂直分布特征研究[J]. 南方农业学报, 2012, 43(5): 630-633.
[30] 余立华, 刘桂华, 陈四进, 等. 栗茶间作模式下茶树根系的基础特性[J]. 经济林研究, 2006, 24(3): 6-10.
[31] 马云飞, 罗会斌, 宋街明, 等. 我国部分典型植烟区土壤腐殖质组成特征及其与部分土壤因子的关系[J]. 中国烟草学报, 2013, 19(1): 21-25.
[32] 陈家瑞, 曹建华, 梁毅, 等. 石灰土发育过程中土壤腐殖质组成及其与土壤钙赋存形态关系[J]. 中国熔岩, 2012, 31(1): 7-12.
[33] 张健, 刘国彬, 许明祥. 黄土丘陵区退耕地生物结皮影响下的土壤腐殖质分异特征[J]. 土壤, 2010, 42(4): 541-547.
Outlines

/