Welcome to Journal of Tea Science,Today is

Analysis of Glutathione S-transferase Genes in Tea Plant (Camellia sinensis) Based on Transcriptome Analysis

  • ZHANG Yazhen ,
  • WEI Kang ,
  • WANG Liyuan ,
  • CHENG Hao
Expand
  • Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China

Received date: 2016-04-14

  Online published: 2019-08-26

Abstract

Glutathione S-transferases (GSTs) belong to a superfamily of multifunctional enzymes and are ubiquitous in plants. Forty nine CsGSTs genes were identified by transcriptome analysis of Zhonghuang 2 and Longjing 43 under control and shading treatment. Nineteen CsGSTs with relatively high expression levels in buds were used for sequence and phylogenetic tree analysis. Real-time fluorescence quantitative PCR (qRT-PCR) was performed to analyze the expression patterns of 8 candidate genes in different leaf positions of Longjing 43. The results showed that CsGSTs were expressed in all tested leaves, but exhibited different expression patterns. CsGST20 showed an increasing expression from a bud with a leaf to the sixth leaf, suggesting a potential role in stress resistance. On the other hand, the expression level of CsGST24 dropped significantly, suggesting that CsGST24 might participate in anthocyanin accumulation in tea plants.

Cite this article

ZHANG Yazhen , WEI Kang , WANG Liyuan , CHENG Hao . Analysis of Glutathione S-transferase Genes in Tea Plant (Camellia sinensis) Based on Transcriptome Analysis[J]. Journal of Tea Science, 2016 , 36(5) : 513 -522 . DOI: 10.13305/j.cnki.jts.2016.05.010

References

[1] Mohsenzadeh S, Esmaeili M, Moosavi F, et al.Plant glutathione S-transferase classification, structure and evolution[J]. African Journal of Biotechnology, 2011, 10(42): 8160-8165.
[2] Shimabukuro RH, Swanson HR, Walsh WC.Glutathione conjugation: atrazine detoxification mechanism in corn[J]. Plant Physiology, 1970, 46(1): 103-107.
[3] 马立功, 孟庆林, 张匀华, 等. 向日葵谷胱甘肽-S-转移酶基因的克隆及抗病功能研究[J]. 中国油料作物学报, 2015, 37(5): 635-643.
[4] Basantani M, Srivastava A.Plant glutathione transferases—a decade falls short[J]. Canadian Journal of Botany, 2007, 85(5): 443-456.
[5] Dixon DP, Skipsey M, Edwards R.Roles for glutathione transferases in plant secondary metabolism[J]. Phytochemistry, 2010, 71(71): 338-350.
[6] Bilang J, Sturm A.Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-Azido-indole-3-acetic acid[J]. Plant Physiology, 1995, 109(1): 253-260.
[7] Dixon DP, Lapthorn A, Madesis P, et al.Bingding and glutathione conjugation of porphyrinogens by plant glutathione transferases[J]. The Journal of Biological Chemistry, 2008, 283(29): 20268-20276.
[8] Loyall L, Uchida K, Braun S, et al.Glutathione and a UV light-induced glutathione S-transferases are involved in signaling to chalcone synthase in cell cultures[J]. Plant Cell, 2000, 12(10): 1939-1950.
[9] Kampranis SC, Damianova R, Atallah M, et al.A novel plant glutathione S-transferase/peroxidase suppresses bax lethality in yeast[J]. The Journal of Biological Chemistry, 2000, 275(38): 29207-29216.
[10] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908.
[11] Wei K, Wang LY, Wu LY, et al.Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.)[J]. PLoS ONE, 2014, 9(9): e107201.
[12] Bianchi MW, Roux C, Vartanian N.Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione tranferase/peroxidase[J]. Physiologia plantarum, 2002, 116(1): 96-105.
[13] Wagner U, Edwards R, Dixon DP, et al.Probing the diversity of the Arabidopsis glutathione S-transferase gene family[J]. Plant Molecular Biology, 2002, 49(5): 515-532.
[14] Xu J, Tian YS, Xing XJ, et al.Over-expression of AtGSTU19 provides tolerance to salt, drought and methy viologen stresses in Arabidopsis[J]. Physiologia Plantarum, 2015, 156(2): 164-175.
[15] Jiang Y, Yang B, Harris NS, et al.Comparative proteomic analysis of Arabidopsis roots[J]. Journal of Experimental Botany, 2007, 58(13): 3591-3607.
[16] Kitamura S, Shikazono N, Tanaka A.Transparent testa 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis[J]. The Plant Journal, 2004, 37(1): 104-114.
[17] Sun Y, Li H, Huang JR.Arabidopsis TT19 function as a carrier to transport anthocyanin from the cytosol to tonoplasts[J]. Molecular Plant, 2012, 5(2): 387-400.
[18] Li X, Gao P, Cui DJ, et al.The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3′amino acid substitution in glutathione S-transferase[J]. Plant Cell and Environment, 2010, 34(3): 374-388.
[19] Zhao J.Flavonoid transport mechanisms: how to go, and with whom[J]. Trends in Plant Science, 2015, 20(9): 576-585.
[20] Hu B, Zhao J, Lai B, et al.LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn[J]. Plant Cell Rep, 2016. DOI: 10.1007/s00299-015-1924-4.
[21] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 132-140.
[22] 张琳, 何晓叶, 李建科. 紫阳富硒地区茶叶中茶多酚及硒含量不同季节与叶片分布规律[J]. 农产品加工, 2014, 10: 13-15.
[23] 游见明, 曹新志. 福林酚法测定茶树中茶多酚的分布水平[J]. 湖北农业科学, 2013, 52(10): 2417-2419.
[24] Wang L, Yue C, Cao HL, et al.Biochemical and transcriptome analysis of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biology, 2014, 14(1): 1-13.
[25] Bresell A, Weinander R, Lunsqvist G, et al.Bioinformatic and enzymatic characterization of the MAPEG superfamily[J]. FEBS Journal, 2005, 272(7): 1688-1703.
[26] Pflugmacher S, Schroder P, Sandermann H Jr.Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics[J]. Phytochemistry, 2000, 54(3): 267-273.
[27] Jiang HW, Liu MJ, Chen IC, et al.A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development[J]. Plant Physiology, 2010, 154(4): 1646-1658.
[28] Chen JH, Jiang HW, Hsieh EJ, et al.Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid[J]. Plant Physiology, 2012, 158(1): 340-351.
[29] Chen WQ, Chao G, Singh KB.The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites[J]. The Plant Journal, 1996, 10(6): 955-966.
[30] Chen W, Singh KB.The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element[J]. The Plant Journal, 1999, 19(6): 667-677.
[31] Kovtun Y, Chiu WL, Tena G, et al.Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants[J]. Proc Natl Acad Sci, 2000, 97(6): 2940-2945.
[32] Thatcher LF, Carrie C, Andersson CR, et al.Differential gene expression and subcellular targeting of Arabidopsis glutathione S-transferase F8 is achieved through alternative transcription start sites[J]. The Journal of Biological Chemistry, 2007, 282(39): 28915-28928.
[33] Dixon DP, Davis BG, Edwards R.Functional divergence in the glutathione transferase superfamily in plants[J]. The Journal of Biological Chemistry, 2002, 277(34): 30859-30869.
[34] Urano J, Nakagawa T, Maki Y, et al.Molecular cloning and characterization of a rice dehydroascorbate reductase[J]. Federation of European Biochemical Societies, 2000, 466(1): 107-111.
[35] Ali MB, Hahn EJ, Paek KY.Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis[J]. Plant Physiology and Biochemistry, 2005, 43(3): 213-223.
[36] Dixon DP, Cole DJ, Edwards R.Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism[J]. Archives of Biochemistry and Biophysics, 2000, 384(2): 407-412.
[37] Thom R, Dixon DP, Edwards R, et al.The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism[J]. Journal of Molecular Biology, 2001, 308(5): 949-962.
[38] Tsuchiya T, Takesawa T, Kanzaki H, et al.Genomic structure and differential expression of two tandem-arranged GSTZ genes in rice[J]. Gene, 2004, 335(23): 141-149.
[39] Reumann S, Quan S, Aung K, et al.In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes[J]. Plant Physiology, 2009, 150(1): 125-143.
[40] Sappl PG, Carroll AJ, Clifton R, et al.The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress[J]. The Plant Journal, 2009, 58(1): 53-68.
Outlines

/