Welcome to Journal of Tea Science,Today is

Genetic Diversity of Wild Tea Plant in Different Altitude in Qianjiazhai

  • HUANG Xiaoxia ,
  • TANG Tan ,
  • JIANG Yonglei ,
  • FENG Chengcheng ,
  • CHENG Xiaomao
Expand
  • Faculty of Landscape Architecture, Southwest Forestry University, Kunming 650224, China

Received date: 2015-01-13

  Revised date: 2015-03-17

  Online published: 2019-08-26

Abstract

5 pairs of EST-SSR markers derived by the authors were used to study genetic diversity and genetic structure of 7 wild tea populations at different altitudes in Qianjiazhai. At the species level, Shannon information index (I) and Nei’s gene diversity (He) were 1.33 and 0.66, respectively, indicating this species has high genetic diversity at species level. Along altitudinal gradients, the genetic diversity among population of wild tea was different and showed low-high-low distribution. The genetic diversity of population at altitude 2β100βm was much higher than others populations. AMOVA analysis showed that only 16.32% of the total genetic variation occurred among populations, whereas 83.68% of the variance was within populations, which was in line with the coefficient of genetic differentiation (Fst = 0.12). And the gene flow Nm was 1.84, indicating the genetic diversity between wild ancient population in was characterized by the moderate level. The genetic characteristics of wild tea and the habitat heterogeneity in different elevation are the main reason of existing genetic pattern.

Cite this article

HUANG Xiaoxia , TANG Tan , JIANG Yonglei , FENG Chengcheng , CHENG Xiaomao . Genetic Diversity of Wild Tea Plant in Different Altitude in Qianjiazhai[J]. Journal of Tea Science, 2015 , 35(4) : 347 -353 . DOI: 10.13305/j.cnki.jts.2015.04.006

References

[1] Sokal R R, Jacquez G M, Wooten M.Spatial autocorrelation analysis of migration and selection[J]. Genetics, 1989, 121(4): 845-855.
[2] 籍新波. 不同海拔天山云杉居群的EST-SSR遗传多样性研究[D]. 保定: 河北农业大学, 2012.
[3] Gupta P K, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat[J]. Molecular Genetics and Genomics, 2003, 270(4): 315-323.
[4] Yanik B, Jun Z, Dainis R, et al. Characterization of EST-SSRs in loblolly pine and spruce[J]. Tree Genetics and Genomes, 2007, 3(3): 251-259.
[5] 徐立安, 李新军, 潘惠新, 等. 用SSR研究栲树群体遗传结构[J]. 植物学报, 2001, 43(4): 409-412.
[6] Modrzynski J, Prus Glowacki W.Isoenzymatic variztion in some of the polish populations of Norway spruce (picea abies) in the IUFRO-1972 province trial[J]. Acta Societatis Botanicorium Poloniae, 1998, 67(1): 75-82.
[7] 孙雪梅, 黄玫, 刘本英, 等. 云南野生茶树的地理分布及形态多样性[J]. 中国农学通报, 2012, 28(25): 277-288.
[8] 王平盛. 云南作物种质资源—茶叶篇[M]. 昆明: 云南科技出版社, 2007.
[9] 刘振, 姚明哲, 王新超, 等. 基于EST-SSR的福建地区茶树资源遗传多样性和亲缘关系分析[J]. 中国农业科学, 2009, 42(5): 1720-1727.
[10] 乔婷婷, 马春雷, 周炎花, 等. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析[J]. 作物学报, 2010, 36(5): 744-753.
[11] 吴晓梅, 姚明哲, 马春雷, 等. 利用EST-SSR标记研究适制绿茶与乌龙茶品种的遗传多样性与遗传结构[J]. 茶叶科学, 2010, 30(3): 195-202.
[12] 刘本英, 李友勇, 孙雪梅, 等. EST-SSR分析云南茶树资源的遗传多样性和亲缘关系[J]. 核农学报, 2010, 24(5): 956-967.
[13] 周萌, 李友勇, 孙雪梅, 等. 基于EST-SSR标记的云南野生茶树遗传多样性分析[J]. 江苏农业科学, 2013, 41(12):22-27.
[14] 张芳赐, 虞富莲, 张顺高. 哀牢山国家自然保护区云南省镇沅千家寨野生古茶树考察论证意见[J]. 农业考古, 1997, 17(2): 216-217.
[15] 柴勇, 朱华, 孟广涛, 等. 云南哀牢山古茶树群落优势树种的居群结构与分布格局[J]. 林业科学研究, 2011, 24(3): 277-284.
[16] 黄建安, 黄意欢, 罗军武, 等. 茶树基因组DNA的高效提取方法[J]. 湖南农业大学学报: 自然科学版, 2003, 29(5): 402-407.
[17] 程小毛, 陈自兰, 王华. 茶树EST-SSRs在山茶科植物中的通用性研究[J]. 安徽农业科学, 2011, 39(13): 7596-7598.
[18] 盖红梅, 任民. SSR数据处理宏程序Data Trans 1.0[J]. 分子植物育种: 网络版, 2011, 9(48): 1359-1365. doi: 10.5376/mpb.cn.2011.09.0048.
[19] Excoffier L, Smouse P E, Quattro J M.Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131(2): 479-491.
[20] Wright S.The interpretation of population structure by F-statistics with special regard to systems of mating[J]. Evolution, 1965, 19(3): 395-420.
[21] Wright S.Evolution and the Genetics of Populations: Experimental Results and Evolutionary Deductions [M]. Chicago Illinois: The University of Chicago Press, 1977.
[22] 陈灵芝. 中国的生物多样性现状及其保护对策[M]. 北京: 科学出版社, 1993.
[23] 钱迎倩, 马克平. 生物多样性研究的原理与方法[M]. 北京: 中国科学技术出版社, 1994.
[24] 汪小全, 邹喻苹, 张大明, 等. 银杉遗传多样性的RAPD分析[J]. 中国科学: C辑, 1996, 26(5): 718-724.
[25] 曾贞. 混合花粉授粉茶树杂交F1代AFLP分析及优株选择[D]. 长沙: 湖南农业大学, 2007.
[26] 游小青, 李名君. 茶树种质资源萜烯指数分析[C]//中国农业科学院茶叶研究所. 茶叶科学研究论文集. 上海: 上海科学技术出版社, 1992: 140-146.
[27] Di X Y, Liu K W, Hou S Q, et al. Genetic variation of hazel (Corylus heterophylla) populations at different altitudes in Xingtangsi forest park in Huoshan, Shanxi, China[J]. Plant Omics Journal, 2014, 7(4): 213-220.
[28] Zhao D W, Yang J B, Yang S X, et al. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers[J]. BMC Plant Biology, 2014, 14(1): 14-26.
[29] 黄玮, 孙平, 张文生, 等. 北京东灵山地区不同海拔柴胡居群的遗传多样性[J]. 植物遗传资源学报, 2008, 9(4): 453-457.
[30] Wright S.Evolution in Mendelian populations[J]. Bulletin of Mathematical Biology, 1990, 52(12): 201-207.
[31] 闫女, 王丹, 高亚卉, 等. 七里峪不同海拔茶条槭居群的遗传多样性[J]. 林业科学, 2010, 46(10): 50-56.
Outlines

/