Welcome to Journal of Tea Science,Today is

Effects of Exogenous Calcium and Inhibitors of Calcium Signaling Transduction Pathway on Cold Resistance of Tea Plant

  • HUANG Yuting ,
  • QIAN Wenjun ,
  • WANG Bo ,
  • CAO Hongli ,
  • WANG Lu ,
  • HAO Xinyuan ,
  • WANG Xinchao ,
  • YANG Yajun
Expand
  • 1. Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China;
    2. Horticultural College of Northwest A & F University, Yangling 712100, China;

Received date: 2015-04-14

  Revised date: 2015-05-29

  Online published: 2019-08-26

Abstract

The calcium signal transduction pathway plays a pivotal role in the response to the stress of low temperatures. In order to verify the relationship between calcium signal transduction pathway and cold resistance of tea plant, the changes of some cold resistance related index were measured under artificial low temperature stress in climatron accompanied with using exogenous CaCl2, CaM inhibitor W-7 [N-(6-Aminohexyl)-5-chloro-1-naphthalene-sulfonamide] and calcium signal channel inhibitor LaCl3, respectively. Calcium signaling transduction pathway inhibitors W-7 and LaCl3 improved electrolyte leakage, enhanced contents of malondialdehyde (MDA), superoxide anion radical (O2·-) and proline, reduced the activities of superoxide dismutase (SOD) compared with control treatment, however, CaCl2 treatment showed opposite effects. It showed that calcium signaling system play an important role in the response to low temperature stress in tea plant.

Cite this article

HUANG Yuting , QIAN Wenjun , WANG Bo , CAO Hongli , WANG Lu , HAO Xinyuan , WANG Xinchao , YANG Yajun . Effects of Exogenous Calcium and Inhibitors of Calcium Signaling Transduction Pathway on Cold Resistance of Tea Plant[J]. Journal of Tea Science, 2015 , 35(6) : 520 -526 . DOI: 10.13305/j.cnki.jts.2015.06.002

References

[1] Minorsky P.An heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer of injury[J]. Plant, Cell & Environment, 1985, 8(2): 75-94.
[2] 梁颖, 王三根. Ca2+对低温下水稻幼苗膜的保护作用[J]. 作物学报, 2001, 27(1): 59-63.
[3] 肖坤, 克热木·伊力, 王一静, 等. CaCl2处理对不同树龄库尔勒香梨提高抗寒性的研究[J]. 新疆农业科学, 2014, 51(2): 241-249.
[4] 闫秋洁, 黄丹, 辜英琼, 等. 外源钙对自然低温下富贵竹叶片生长的影响[J]. 北方园艺, 2015(3): 66-69.
[5] Bush D S.Calcium regulation in plant-cells and its role in signaling[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 95-122.
[6] Evans N H, McAinsh M R, Hetherington A M. Calcium oscillations in higher plants[J]. Current Opinion in Plant Biology, 2001, 4(5): 415-420.
[7] Sanders D, Brownlee C, Harper J F.Communicating with calcium[J]. Plant Cell, 1999, 11(4): 691-706.
[8] Hidaka H, Sasaki Y, Tanaka T, et al. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(7): 4354-4357.
[9] Thuleau P, Graziana A, Rossignol M, et al. Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(16): 5932-5935.
[10] 高洪波, 陈贵林. 钙调素拮抗剂与Ca2+对茄子幼苗抗冷性的影响[J]. 园艺学报, 2002, 29(3): 243-246.
[11] 简令成, 王红. 钙(Ca2+)在植物抗寒中的作用[J]. 细胞生物学杂志, 2002, 24(3): 166-171.
[12] Krol E, Dziubinska H, Trebacz K.Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba[J]. Physiologia Plantarum, 2004, 120(2): 265-270.
[13] 陈曦, 代焕琴, 张旭家, 等. 低温诱导及Ca2+信号对胡萝卜悬浮培养细胞抗冻蛋白的合成及细胞抗冻能力的影响[J]. 科学技术与工程, 2002, 2(3): 23-26.
[14] 虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1): 1-8.
[15] Wang X C, Zhao Q Y, Ma C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14(1): 415.
[16] 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182.
[17] Xu P L, Guo Y K, Bai J G, et al. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light[J]. Physiologia Plantarum, 2008, 132(4): 467-478.
[18] 李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进[J]. 云南植物研究, 2005, 27(2): 211-216.
[19] Zuther E, Schulz E, Childs L H, et al. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions[J]. Plant, Cell & Environment, 2012, 35(10): 1860-1878.
[20] 宗会, 徐照丽, 刘娥娥, 等. 低温胁迫下氯丙嗪和氯化镧对水稻幼苗脯氨酸积累的影响[J]. 热带亚热带植物学报, 2003, 11(3): 241-244.
[21] Browse J, Xin Z.Temperature sensing and cold acclimation[J]. Current Opinion in Plant Biology, 2001, 4(3): 241-246.
[22] Ashraf M, Foolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216.
[23] Bravo L A, Ulloa N, Zuniga G E, et al. Cold resistance in Antarctic angiosperms[J]. Physiologia Plantarum, 2001, 111(1): 55-65.
[24] 王丹, 宣继萍, 朱小晨, 等. 假俭草抗寒性与体内碳水化合物、脯氨酸、可溶性蛋白含量的关系[J]. 草地学报, 2010, 18(6): 816-822.
[25] 张基德, 李玉梅, 陈艳秋, 等. 梨品种枝条可溶性糖、脯氨酸含量变化规律与抗寒性的关系[J]. 延边大学农学学报, 2004, 26(4): 281-285.
[26] Reddy A S, Ali G S, Celesnik H, et al. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression[J]. Plant Cell, 2011, 23(6): 2010-2032.
[27] Yang T, Chaudhuri S, Yang L, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. Journal of Biological Chemistry, 2010, 285: 7119-7126.
[28] 宗会, 刘娥娥, 郭振飞, 等. Ca2+·CaM信使系统与水稻幼苗抗逆性研究初报[J]. 华南农业大学学报, 2000, 21(1): 63-65, 67.
[29] 李卫, 孙中海, 章文才, 等. 钙与钙调素对柑橘原生质体抗冻性的影响[J]. 植物生理学报, 1997, 23(3): 262-266.
[30] Luan S.The CBL-CIPK network in plant calcium signaling[J]. Trends in Plant Science, 2009, 14(1): 37-42.
Outlines

/