[1] Yang Z Y, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.
[2] 吴勇. 萜烯类化合物与茶叶香气[J]. 化学工程与装备, 2009, 32(11): 123-125.
[3] 骆耀平. 茶树栽培学[M]. 4版. 北京: 中国农业出版社, 2008: 77-107.
[4] 刘声传, 曹雨, 鄢东海, 等. 贵州野生茶树资源地理分布和形态特征与气候要素的关系[J]. 茶叶科学, 2013, 33(6): 517-525.
[5] 金志凤, 叶建刚, 杨再强, 等. 浙江省茶叶生长的气候适宜性[J]. 应用生态学报, 2014, 25(4): 967-973.
[6] 徐辉, 李磊, 李庆会, 等. 大气CO2浓度与温度升高对茶树光合系统及品质成分的影响[J]. 南京农业大学学报, 2016, 39(4): 550-556.
[7] 罗凡, 龚雪蛟, 张厅, 等. 氮磷钾对春茶光合生理及氨基酸组分的影响[J]. 植物营养与肥料学报, 2015, 21(1): 147-155.
[8] 董迹芬, 边金霖,朱全武, 等. 茶叶香气与产地土壤条件的关系[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 309-317.
[9] Liu M, Xie F C, Cao R R, et al.Effect of different cover cultivations in later summer on aroma constituents of autumn tea (Camellia sinensis L.)[J]. Journal of Agricultural Chemistry and Environment, 2014, 3: 1-6.
[10] 张正群, 田月月, 高树文, 等. 茶园间作芳香植物罗勒和紫苏对茶园生态系统影响研究[J]. 茶叶科学, 2016, 36(4): 389-395.
[11] 陈周一琪,王志岚. 肯尼亚茶产业与茶树资源育种研究[J]. 中国农学通报, 2012, 28(19): 97-103.
[12] 王志岚, 陈亮. 印度茶树资源与育种[J]. 中国茶叶, 2011, 33(6): 4-5.
[13] 王秋霜, 乔小燕, 吴华玲, 等. 斯里兰卡五大区域红茶香气物质的HS-SPME/GC-MS研究[J]. 食品研究与开发, 2016, 37(22): 128-133.
[14] 乔小燕, 王秋霜, 陈栋. 主要产茶国茶树资源与红茶育种研究进展[J]. 植物遗传资料学报, 2015, 16(6): 1135-1140.
[15] Yin J F, Zhang Y N, Du Q Z, et al.Effect of Ca2+ concentration on the tastes from the main chemicals in green tea infusions[J]. Food Research International, 2014, 62: 941-946.
[16] Kelebek H.LC-DAD-ESI-MS/MS characterization of phenolic constituents in Turkish black tea: effect of infusion time and temperature[J]. Food Chemistry, 2016, 204(2): 227-238.
[17] Xu Y Q, Zou C, Gao Y, et al.Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas[J]. Food Chemistry, 2017, 236: 142-151.
[18] 刘盼盼, 徐勇泉, 尹军峰, 等. 主要水质因子对清香型黄山毛峰茶挥发性成分的影响[J]. 中国食品学报, 2016, 16(1): 245-257.
[19] Schuh C, Schieberle P.Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.
[20] Muthumani T, Verma D P, Venkatesan S, et al.Influence of climatic seasons on quality of south Indian black teas[J]. Journal of Natural Products, 2013, 3(1): 30-39.
[21] 宁井铭, 方俊婷, 朱小元, 等. 基于代谢谱分析的祁门红茶加工过程中儿茶素及芳香类物质变化[J]. 食品工业科技, 2016, 37(9): 127-133, 138.
[22] 陈贤明, 冯林, 沈强, 等. 肯尼亚红碎茶与滇红工夫香气成分比较分析[J]. 西南师范大学学报(自然科学版), 2012, 37(7): 90-98.
[23] Pang X L, Qin Z H, Zhao L, et al.Development of regression model to differentiate quality of black tea (Dianhong): correlate aroma properties with instrumental data using multiple linear regression analysis[J]. International Journal of Food Science and Technology, 2012, 47(11): 2372-2379.
[24] 雷攀登, 黄建琴, 丁勇, 等. 不同区域祁门红茶品质特点分析[J]. 食品科学, 2015, 36(10): 144-149.
[25] 郭雯飞, 吕毅, 江元勋. 正山小种和烟正山小种红茶的香气组成[J]. 中国茶叶加工, 2005(4): 18-23.
[26] 赖幸菲, 潘顺顺, 李裕南, 等. 不同季节和茶类的金萱品种茶叶香气成分分析[J]. 食品工业科技, 2015, 30(10): 62-68, 72.
[27] 徐元骏, 何靓, 贾玲燕, 等. 不同地区及特殊品种红茶香气的差异性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(3): 323-330.
[28] 王秋霜, 吴华玲, 陈栋, 等. 广东英德红茶代表产品的香气成分鉴定研究[J]. 茶叶科学, 2012, 32(5): 448-456.
[29] 王秋霜, 乔小燕, 操君喜, 等. 广东单丛茶树品种红茶香气成分的GC-MS分析[J]. 食品科学, 2015, 36(4): 114-118.
[30] 刘晶晶, 王富民, 刘国峰, 等. 茶树萜类香气物质代谢谱与相关基因表达谱时空变化关系[J]. 园艺学报, 2014, 41(10): 2094-2016.
[31] Mizutani M, Nakanish H, Ema J, et al.Cloning of β-primeverosidase from tea leaves: a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130(12): 2164-2176.
[32] 夏涛, 童启庆, 董尚胜, 等. 红茶萎凋发酵中β-葡萄糖苷酶的活性变化[J]. 茶叶科学, 1996, 16(1): 63-66.
[33] Guo W F, Yamaguchi K, Watanabe N, et al.Isolation and characterization of β-primeverosidase concerned with alcoholic aroma formation in tea leaves[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(11): 1810-1814.
[34] 张正竹, 宛晓春, 坂田完三. 茶叶β-葡萄糖苷酶亲和层析醇化与性质研究[J]. 茶叶科学, 2005, 25(1): 16-22.
[35] 邓慧莉, 周子维, 王秋铭, 等. 武夷岩茶加工工过程β-葡萄糖苷酶对香气形成的影响[J]. 福建茶叶, 2016, (2): 1-3, 7.
[36] 陈亮, 赵丽萍, 马春雷, 等. 茶树β-葡萄糖苷酶和β-樱草糖苷酶基因表达差异分析[J]. 园艺学报, 2009, 36(1): 87-92.
[37] 周汉琛, 雷攀登, 丁勇. 茶树β-葡萄糖苷酶研究进展[J]. 茶叶科学, 2016, 36(2): 111-118.
[38] Ohgami S, Ono E, Horikawa M, et al.Volatile glycosylation in tea plants: Sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases[J]. Plant Physiology, 2015, 168: 467-477.
[39] Gui J D, Fu X M, Zhou Y, et al.Dose enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process?[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905-6914.
[40] Zhou Y, Zeng L T, Gui J D, et al.Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis)[J]. Food Research International, 2017, 96: 206-214.
[41] 张正竹, 宛晓春, 施兆鹏, 等. 鲜茶叶摊放过程中呼吸速率、β-葡萄糖苷酶活性、游离态香气和糖苷类香气前体含量的变化[J]. 植物生理学通讯, 2003, 39(2): 134-136.
[42] 夏涛, 童启庆, 董尚胜, 等. 红茶萎凋发酵过程中β-葡萄糖苷酶的活性变化[J]. 茶叶科学, 1996, 16(1): 63-66.
[43] 丰金玉, 刘昆言, 秦昱, 等. 红茶加工中多酚氧化酶、过氧化物酶和β-葡萄糖苷酶活性变化[J]. 农学学报, 2014, 4(11): 96-99.
[44] 夏涛, 童启庆. 冷冻萎凋对茶叶多酚氧化酶和β-葡萄糖苷酶活性的影响初探[J]. 浙江农业大学学报, 1997, 23(1): 1-6.
[45] Muthumani T, Senthil Kumar R S. Studies on freeze-withering in black tea manufacturing[J]. Food Chemistry, 2001, 72: 319-327.
[46] 张贝贝, 艾仄宜, 曲凤风, 等. 黄光萎凋对红茶品质的影响[J]. 华中农业大学学报, 2016, 35(2): 108-114.
[47] 项丽慧, 林馥茗, 孙威江, 等. LED黄光对工夫红茶萎凋过程香气相关酶基因表达及活性的影响[J]. 茶叶科学, 2015, 35(6): 559-566.
[48] Mahanta R K, Baruah S.Relationship between process of withering and aroma characteristics of black tea[J]. Journal of the Science of Food and Agriculture, 1989, 46: 461-468.
[49] 朱宏凯, 何华锋, 叶阳, 等. 温度对工夫红茶揉捻理化品质的影响[J]. 现代食品科技, 2017, 33(5): 1-8.
[50] 董春旺, 叶阳, 江用文, 等. 工夫红茶可视化富氧发酵机设计及试验研究[J]. 茶叶科学, 2015, 35(4): 370-376.
[51] 潘科, 冯林, 陈娟, 等. HS-SPME-GC-MS联用法分析不同通氧发酵加工工艺红茶香气成分[J]. 食品科学, 2015, 36(8): 181-186.
[52] 余露婷, 袁海波, 王伟伟, 等. 光照强度对发酵叶主要生化成分动态变化的影响[J]. 茶叶科学, 2016, 36(2): 149-159.
[53] 宋朝鹏, 高远, 武圣江, 等. 烤烟成熟过程中类胡萝卜素变化与其降解香气物质关系[J]. 中国农业科学, 2009, 42(8): 2875-2881.
[54] Baldermann S, Kato M, Kurosawa M, et al.Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour[J]. Journal of Experimental Botany, 2010, 61: 2967-2977.
[55] Vogel J T, Tan B C, McCarty D R, et al. The Carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions[J]. Journal of Biological Chemistry, 2008, 283(17): 11364-11373.
[56] Ilg A, Beyer P, Al-Babili S.Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis[J]. The Febs Journal, 2009, 276(3): 736-747.
[57] Bouvier F, Suire C, Mutteer J, et al.Oxidative remodeling of chromoplast carotenoids: Identification of the carotenoid dioxygenase caccd and cszcd genes involved in crocus secondary metabolite biogenesis[J]. Plant Cell, 2003, 15(1): 47-62.
[58] Ho C T, Zheng X, Li S M.Tea aroma formation[J]. Food Science and Human Wellness, 2015, 4: 9-27. 2003, 9: 1-6.
[59] 宛晓春. 茶叶生物化学 [M]. 3版. 北京: 中国农业出版社, 2011: 213-214.
[60] Schwad W, Davidovich-Rikanati R, Lewinsohn E.Biosynthesis of Plant-dervived flavor compounds[J]. The Plant Journal, 2008, 54: 712-732.
[61] Yaylayan V A.Recent advances in the chemistry of strecker degradation and Amadori rearrangement: implications to aroma and color formation[J]. Food Science and Technology Research, 2003, 9: 1-6.
[62] Rizzi G P.The strecker degradation of amino acids: newer avenues for flavor formation[J]. Food Reviews International, 2008, 24: 416-435.
[63] 王旭, 冯涛, 庄海宁. 氨基酸对美拉德反应产物呈香特性的研究进展[J]. 中国调味, 2013, 38(7): 1-5,13.
[64] Wang Y, Ho C T.Formation of 2,5-Dimethy-4-hydroxy-3(2H)-furanone through methylglyoxal: a Maillard reaction intermediate[J]. Journal of Agricultural and Food Chemistry, 2008, 56: 7405-7409.
[65] Chen X M, Kitts D D.Indentification and quantification of α-dicarbonyl compounds produced in different suger-amino acid Maillard reaction model systems[J]. Food Research International, 2011, 44: 2775-2782.
[66] Wong K H, Aziz A S, Mohamed S.Sensory aroma from Maillard reaction of individual and combinations of amino acids with glucose in acidic conditions[J]. International Journal of Food Science and Technology, 2008, 43: 1512-1519.
[67] Adams A, De Kimpe N.Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: extraordinary Maillard flavor compounds[J]. Chemical Reviews, 2006, 106(6): 2299-2319.
[68] Wang K B, Liu F, Liu Z H, et al.Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer[J]. Institute of Food Science and Technology, 2011, 46(7): 1406-1412.
[69] Ho C T, Lin K, Shahidi F.Tea and tea products: chemistry and health-promoting properties [M]. CRC Press: Boca Raton, FL, 2009: 154-200.
[70] Fu X M, Chen Y Y, Mei X, et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength [J/OL]. Scientific Reports, 2015, 5, 16858. http://dx. Doi.org/10.1038/srep 16858.
[71] Yang Z Y, Kobayashi E, katsuno T, et al. Characterization of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark[J]. Food Chemistry, 2012, 135(4): 2268-2276.
[72] Shi J, Wang L, Ma C Y, et al.Aroma changes of black tea prepared from methyl jasmonate treated tea plants[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 313-321.
[73] Kraujalyte V, Pelvan E, Alasalvar C.Volatile compounds and sensory characteristics of various instant teas produced from black tea[J]. Food Chemistry, 2016, 194: 864-872.
[74] Yang T, Zhu Y, Shao C Y, et al.Enantiomeric analysis of linalool in teas using headspace solid-phasemicroextraction with chiral gas chromatography[J]. Industrial Crop and Produces, 2016, 83: 17-23.
[75] 邵晨阳, 吕海鹏, 朱荫, 等. 不同茶类中挥发性萜类化合物的对映异构体[J]. 中国农业科学, 2017, 50(6): 1109-1125.
[76] Zhu Y, Shao C Y, Lv H P, et al.Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis)[J]. Journal of Chromatography A, 2017, 1490: 177-190.
[77] Sheibani E, Duncan S E, Kuhn D D, et al.Changes in flavor volatile composition of oolong tea after panning during tea processing[J]. Food Science & Nutrition, 2016, 4(3): 456-468.
[78] Sine Y, José A. Sánchaez-López, Pablo M.Granitto, et al. Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS[J]. Talanta, 2016, 152: 45-53.
[79] Magagna F, Cordero C, Cagliero C, et al.Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography-Mass spectrometry combined with high concentration capacity sample preparation techniques: Towards a fully automated sensomic assessment[J]. Food Chemistry, 2017, 225: 276-287.