Journal of Tea Science ›› 2016, Vol. 36 ›› Issue (6): 587-593.doi: 10.13305/j.cnki.jts.2016.06.005
Previous Articles Next Articles
LEI Shu1,2, LI Xiwang2,3, SUN Xiaoling2,3, WANG Zhiying1,*, XIN Zhaojun2,3,*
Received:
2016-08-03
Online:
2016-12-15
Published:
2019-08-26
CLC Number:
LEI Shu, LI Xiwang, SUN Xiaoling, WANG Zhiying, XIN Zhaojun. Infestation of Ectropis obliqua Enhances Neighboring Tea Plant Defenses Against Conspecific Larvae[J]. Journal of Tea Science, 2016, 36(6): 587-593.
[1] | Kachroo A, Robin GP.Systemic signaling during plant defense[J]. Curr Opin Plant Biol, 2013, 16(4): 527-533. |
[2] | Schweiger R, Heise AM, Persicke M, et al.Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types[J]. Plant Cell Environ, 2014, 37(7): 1574-1585. |
[3] | Dicke M, Baldwin IT.The evolutionary context for herbivore induced plant volatiles: beyond the cry for help[J]. Trends Plant Sci, 2010, 15(3): 167-175. |
[4] | Wu JQ, Baldwin IT.New insights into plant responses to the attack frominsect herbivores[J]. Annu Rev Genet, 2010, 44: 1-24. |
[5] | Engelberth J, Contreras CF, Dalvi C, et al.Early transcriptome analyses of Z-3-Hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles[J]. PLoS ONE, 2013, 8(10): e77465. |
[6] | Scala A, Allmann S, Mirabella R, et al.Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens[J]. Int J Mol Sci, 2013, 14(9): 17781-17811. |
[7] | Baldwin IT, Schultz JC.Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants[J]. Science, 1983, 221(4607): 277-279. |
[8] | Kessler A, Baldwin IT.Plant responses to insect herbivory: the emerging molecular analysis[J]. Annual Rev Plant Biol, 2002, 53: 299-328. |
[9] | Arimura GI, Ozawa R, Nishioka T, et al.Herbivore-induced volatiles induced the emission of ethylene in neighboring lima bean plants[J]. Plant J, 2002, 29(1): 87-98. |
[10] | Tscharntke T, Thiessen S, Dolch R, et al.Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa[J]. Biochem Syst Ecol, 2001, 29(10): 1025-1047. |
[11] | Farmer EE.Surface-to-air signal[J]. Nature, 2001, 411(6839): 854-856. |
[12] | 穆丹, 付建玉, 刘守安, 等. 虫害诱导的植物挥发物代谢调控机制研究进展[J]. 生态学报, 2010, 30(15): 4221-4233. |
[13] | Xin Z, Zhang Z, Chen Z, et al.Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4): 565-572. |
[14] | Xin Z, Li X, Li J, et al.Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua[J]. BioControl, 2016, 61(1): 1-12. |
[15] | Wang GC, Liang HY, Sun XL, et al. Antennal olfactory responses of Apanteles sp. (Hymenoptera: Braconidae) to herbivore-induced plant volatiles [J]. Adv Mater Res, 2012, 393/394/395: 604-607. |
[16] | Sun XL, Wang GC, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. J Chem Ecol, 2014, 40(10): 1080-1089. |
[17] | Sun XL, Li XW, Xin ZJ, et al.Development of synthetic volatile attractant for male Ectropis obliqua moths[J]. J Integr Agr, 2016, 15(7): 1532-1539. |
[18] | Yang ZW, Duan XN, Jin S, et al.Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. J Chem Ecol, 2013, 39(6): 744-751. |
[19] | 孙晓玲, 蔡晓明, 马春雷, 等. 茉莉酸甲酯和机械损伤对茶树叶片多酚氧化酶时序表达的影响[J]. 西北植物学报, 2011, 31(9): 1805-1810. |
[20] | Liu S, Han B.Differential expression pattern of an acidic 9/13 lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant[J]. BMC Plant Biol, 2010, 10(1): 228-243. |
[21] | 张亚丽, 乔小燕, 陈亮. 茶树ACC氧化酶基因全长cDNA的克隆与表达分析[J] 茶叶科学, 2008, 28(6): 459-467. |
[22] | Mithofer A, Wanner G, Boland W.Effects of feeding Spodoptera littoralis on Lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission[J]. Plant Physiol, 2005, 137(3): 1160-1168. |
[23] | Hilker M, Meiners T.Early herbivore alert: insect eggs induce plant defense[J]. J Chem Ecol, 2006, 32(7): 1379-1397. |
[24] | Tamiru A, Bruce TJA, Woodcock CM, et al.Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore[J]. Ecol Lett, 2011, 14: 1075-1083. |
[25] | Turlings TCJ, Wäckers FL.Recruitment of predators and parasitoids by herbivore-damaged plants [M]//Cardé RT, Millar J. Advances in insect chemical ecology. Cambridge: Cambridge University Press, 2004: 21-75. |
[26] | Kim J, Felton GW.Priming of antiherbivore defensive responses in plants[J]. Insect Sci, 2013, 20(3): 273-285. |
[27] | Delory BM, Delaplace P, Fauconnier ML, et al.Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?[J]. Plant Soil, 2016, 402(1): 1-26. |
[28] | Arimura G, Ozawa R, Shimoda T, et al.Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406(6795): 512-514. |
[29] | Arimura G, Kost C, Boland W.Herbivore-induced, indirect plant defences[J]. BBA-Mol Cell Biol L, 2005, 1734(2): 91-111. |
[30] | Cai XM, Sun XL, Dong WX, et al.Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants[J]. Chemoecology, 2014, 24(1): 1-14. |
[31] | Engelberth J, Alborn HT, Schmelz EA, et al.Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004, 101(6): 1781-1785. |
[32] | Kessler A, Halitschke R, Diezel C, et al.Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata[J]. Oecologia, 2006, 148(2): 280-292. |
[33] | Matthes MC, Bruce TJA, Ton J, V, et al. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence[J]. Planta, 2010, 232(5): 1163-1180. |
[1] | XU Jiajia, GUANG Min, SHI Shulin, GAO Hongjian. Physiological and Molecular Mechanisms of Transmembrane Fluoride Uptake by Tea Roots [J]. Journal of Tea Science, 2019, 39(04): 365-371. |
[2] | DENG Jiajun, PAN Hua, ZHANG Fusheng, ZHANG Li, CAO Fang, ZHANG Zhifang, CHEN Junsong. Perchlorate Contamination in Tea and Its Analytical Techniques [J]. Journal of Tea Science, 2019, 39(04): 372-381. |
[3] | LIU Sai, LIU Shuoqian, LONG Jinhua, WU Dunchao, CHEN Yuhong, LIU Liping, LIU Zhonghua, TIAN Na. Functional Analysis of Glutathione Peroxidase Encoding Gene CsGPX1 in Camellia sinensis [J]. Journal of Tea Science, 2019, 39(04): 382-391. |
[4] | GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing. Genome-wide Identification and Expression Analysis of SRO Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2019, 39(04): 392-402. |
[5] | ZHOU Yang, XIAO Wenjun, LIN Ling, YUAN Dongyin, PENG Yingqi, TAN Chunbo, ZHANG Qiang, GONG Zhihua. Hypoglycemic Effects of Black Tea and Fungus Fermented Black Brick Tea on Hyperglycemic Model Mice [J]. Journal of Tea Science, 2019, 39(04): 415-424. |
[6] | ZHAO Xingli, ZHANG Jinfeng, ZHOU Yufeng, ZHAO Dailin, ZHANG Li, ZHOU Luona, TAO Gang. Isolation, Screening and Identification of A Strain of Trichoderma Antagonizing Tea Anthracnose [J]. Journal of Tea Science, 2019, 39(04): 431-439. |
[7] | YU Huan, ZHOU Li, LIN Qin, YANG Jie, SUN Hezhi, WU Xudong, WANG Xinru, ZHANG Xinzhong, CHEN Zongmao, LUO Fengjian. Determination of Pymetrozine in Tea Products by Solid Phase Extraction-Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Journal of Tea Science, 2019, 39(04): 440-446. |
[8] | CHENG Dongmei, ZHANG Li, WEI Hongfei, JIANG Xinfeng, ZHOU Saixia, ZHANG Zhiyong, PENG Yansong. Different Photosynthetic Responses of Camellia sinensis to Lushan Altitude Gradient [J]. Journal of Tea Science, 2019, 39(04): 447-454. |
[9] | ZHANG Hui, WANG Huifang, LIU Yanyan, FAN Zhengrong, ZHANG Zhengzhu, LIU Zhengquan. Study on Physicochemical Characteristics of Matcha Powder with Different Particle Sizes [J]. Journal of Tea Science, 2019, 39(04): 464-473. |
[10] | ZHANG Shuping, WANG Yuefei, XU Ping. Prevention of Tea Polyphenols on Atherosclerosis and Relative Mechanisms [J]. Journal of Tea Science, 2019, 39(03): 231-246. |
[11] | WU Huiping, QI Meng, LI Yeyun, MA Huiqin, WU Xun. Proposal to Replace the Illegitimate Name of Tea Garden Weeds in China [J]. Journal of Tea Science, 2019, 39(03): 247-256. |
[12] | LIU Guanhua, YANG Mei, FU Jianyu, . Cloning and Functional Analysis of CsLCYb and CsLCYe for Carotene Biosynthesis in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 257-266. |
[13] | LEI Lei, WANG Lu, YAO Lina, HAO Xinyuan, ZENG Jianming, DING Changqing, WANG Xinchao, YANG Yajun. Identification and Expression Analysis of Calcium-dependent Protein Kinase CsCDPK17 in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 267-279. |
[14] | GUO Lingling, ZHANG Fen, ZHANG Yazhen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsLHTs Gene Subfamily in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 280-288. |
[15] | CHEN Mei, DAI Weidong, LI Pengliang, ZHU Yin, CHEN Qincao, YANG Yanqin, TAN Junfeng, LIN Zhi. Study on the Changes of Primary Metabolites During the Manufacturing Process of Roasted Green Tea by Pre-column Derivatization Combining with GC-MS [J]. Journal of Tea Science, 2019, 39(03): 297-308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|