[1] Chalasani N, Younossi Z, Lavine J E, et al.The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the study of liver diseases[J]. Hepatology, 2018, 67(1): 328-357. [2] Liu H Y, Niu Q H, Wang T, et al.Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages[J]. International Journal of Biological Sciences, 2021, 17(14): 3745-3759. [3] 樊亚东, 贾建伟, 张晓雨, 等. 非酒精性脂肪性肝病发病机制和临床治疗研究进展[J]. 中西医结合肝病杂志, 2020, 30(1): 93-96. Fan Y D, Jia J W, Zhang X Y, et al.Advances in the pathogenesis and clinical treatment of non-alcoholic fatty liver disease[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2020, 30(1): 93-96. [4] Tilg H, Moschen A R.Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846. [5] Haas J T, Francque S, Staels B.Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annual Review of Physiology, 2016, 78: 181-205. [6] Takaki A, Kawai D, Yamamoto K.Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH)[J]. International Journal of Molecular Sciences, 2013, 14(10): 20704-20728. [7] Qian H, Chao X J, Williams J, et al.Autophagy in liver diseases: a review[J]. Molecular Aspects of Medicine, 2021, 82: 100973. doi: 10.1016/j.mam.2021.100973. [8] Chen C L, Lin Y C.Autophagy dysregulation in metabolic associated fatty liver disease: a new therapeutic target[J]. International Journal of Molecular Sciences, 2022, 23(17): 10055. doi: 10.3390/ijms231710055. [9] Feng J Y, Qiu S T, Zhou S P, et al.mTOR: a potential new target in nonalcoholic fatty liver disease[J]. International Journal of Molecular Sciences, 2022, 23(16): 9196. doi: 10.3390/ijms23169196. [10] Marcondes-de-Castro I A, Reis-Barbosa P H, Marinho T S, et al. AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression[J]. Journal of Gastroenterol and Hepatol, 2023, 38(11): 1868-1876. [11] Zhou J, Farah B L, Sinha R A, et al.Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance[J]. Plos One, 2014, 9(1): e87161. doi: 10.1371/journal.pone.0087161. [12] Choi C, Song H D, Son Y, et al.Epigallocatechin-3-gallate reduces visceral adiposity partly through the regulation of Beclin1-dependent autophagy in white adipose tissues[J]. Nutrients, 2020, 12(10): 3072. doi: 10.3390/nu12103072. [13] Wu D D, Liu Z G, Wang Y Z, et al.Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 5599997. doi: 10.1155/2021/5599997. [14] 赵维良, 王治霞, 喇登海, 等. 血管生成抑制剂ZM 306416对高脂饮食诱导的非酒精性脂肪性肝病小鼠的保护作用[J]. 中国肝脏病杂志(电子版), 2023, 15(2): 36-46. Zhao W L, Wang Z X, La D H, et al.Protective effects of angiogenesis inhibitor ZM 306416 on non-alcoholicfatty liver disease induced by high-fat diet in mice[J]. Chinese Journal of Liver Diseases (ElectronicVersion), 2023, 15(2): 36-46. [15] 赵伟, 孙国志. 不同种实验动物间用药量换算[J]. 畜牧兽医科技信息, 2010(5): 52-53. Zhao W, Sun G Z.Conversion of medication dosage among different experimental animals[J]. Animal Husbandry and Veterinary Science and Technology Information, 2010(5): 52-53. [16] Zeigerer A.NAFLD: a rising metabolic disease[J]. Molecular Metabolism, 2021, 50: 101274. doi: 10.1016/j.molmet.2021.101274. [17] Suk F M, Hsu F Y, Hsu M H, et al.Treatment with a new barbituric acid derivative suppresses diet-induced metabolic dysfunction and non-alcoholic fatty liver disease in mice[J]. Life Sciences, 2024, 336: 122327. doi: 10.1016/j.lfs.2023.122327. [18] Treviño L S, Katz T A.Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease[J]. Endocrinology, 2018, 159(1): 20-31. doi: 10.1210/en.2017- 00887. [19] Chen G, Peng Y, Xie M, et al.A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(22): 5447-5464. [20] Cheng L Z, Wei Y, Peng L L, et al.State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits[J]. Critical Reviews in Food Science and Nutrition, 2023: 1-20. doi: 10.1080/10408398.2023.2236701. [21] Huang F J, Zheng X J, Ma X H, et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications, 2019, 10(1): 4971. doi: 10.1038/s41467-019-12896-x. [22] Xiao Y, Huang Y N, Long F W, et al.Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models[J]. Food Chemistry, 2023, 404: 134382. doi: 10.1016/j.foodchem.2022.134382. [23] Wang Y, Zhao A Q, Du H P, et al.Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity[J]. Journal of Agricultural and Food Chemistry, 2021, 69(40): 11900-11911. [24] Deng X J, Zhang N, Wang Q, et al.Theabrownin of raw and ripened pu-erh tea varies in the alleviation of HFD-induced obesity via the regulation of gut microbiota[J]. European Journal of Nutrition, 2023, 62(5): 2177-2194. [25] Lin F J, Wei X L, Liu H Y, et al.State-of-the-art review of dark tea: from chemistry to health benefits[J]. Trends in Food Science & Technology, 2021, 109: 126-138. doi: 10.1016/j.tifs.2021.01.030. [26] Wang J Y, Zheng D, Huang F J, et al.Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism[J]. Frontiers in Pharmacology, 2022, 13: 875549. doi: 10.3389/fphar.2022.875549. [27] 张文将, 段丽芳, 孟涛, 等. 基于TLR4/MyD88/NF-κB通路探讨茯砖茶改善ApoE-/-小鼠非酒精性脂肪肝的作用[J]. 中成药, 2023, 45(10): 3429-3432. Zhang W J, Duan L F, Meng T, et al.Exploring the effect of Fuzhuan tea on improving non-alcoholic fatty liver disease in ApoE-/- mice based on TLR4/MyD88/NF-κB pathway[J]. Chinese Traditional Patent Medicine, 2023, 45(10): 3429-3432. [28] 张文将, 刘圆月, 范文涛, 等. 茯砖茶对APOE-/-小鼠肝脂合成和氧化应激影响[J]. 食品与生物技术学报, 2021, 40(3): 103-111. Zhang W J, Liu Y Y, Fan W T, et al.Effect of fu brick tea on hepatic lipid synthesis and oxidative stress in APOE-/- mice with non-alcoholic fatty liver[J]. Journal of Food and Biotechnology, 2021, 40(3): 103-111. [29] 张文将, 刘圆月, 易健, 等. 安化黑茶减轻高脂诱导的ApoE-/-小鼠非酒精性脂肪肝[J]. 中国病理生理杂志, 2020, 36(7): 1274-1280. Zhang W J, Liu Y Y, Yi J, et al.Effects of Anhua dark tea on ApoE-/- mice with non-alcoholic fatty liver induced by high-fat diet[J]. Chinese Journal of Pathophysiology, 2020, 36(7): 1274-1280. [30] Frietze K K, Brown A M, Das D, et al.Lipotoxicity reduces DDX58/Rig-1 expression and activity leading to impaired autophagy and cell death[J]. Autophagy, 2022, 18(1): 142-160. [31] Moore M P, Cunningham R P, Meers G M, et al.Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD[J]. Hepatology, 2022, 76(5): 1452-1465. [32] Park H S, Song J W, Park J H, et al.TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation[J]. Autophagy, 2021, 17(9): 2549-2564. [33] Chen R, Wang Q X, Song S H, et al.Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice[J]. European Journal of Pharmacology, 2016, 770: 126-133. doi: 10.1016/j.ejphar.2015.11.012. [34] Lin C W, Zhang H, Li M, et al.Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice[J]. Journal of Hepatology, 2013, 58(5): 993-999. [35] Naito Y, Ushiroda C, Mizushima K, et al.Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids[J]. Journal of Clinical Biochemistry and Nutrition, 2020, 67(1): 2-9. [36] Chyau C C, Wang H F, Zhang W J, et al.Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway[J]. International Journal of Molecular Sciences, 2020, 21(1): 360. doi: 10.3390/ijms21010360. [37] Qin G H, Ma J, Huang Q S, et al.Isoquercetin Improves Hepatic Lipid Accumulation by Activating AMPK pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model[J]. International Journal of Molecular Sciences, 2018, 19(12): 4126. doi: 10.3390/ijms19124126. [38] Li T, Weng J, Zhang Y, et al.mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma[J]. Cell Death and Disease, 2019, 10(8): 619. doi: 10.1038/s41419-019-1828-2. [39] Vujić N, Bradić I, Goeritzer M, et al.ATG7 is dispensable for LC3-PE conjugation in thioglycolate-elicited mouse peritoneal macrophages[J]. Autophagy, 2021, 17(11): 3402-3407. [40] Klionsky D J, Abdelmohsen K, Abe A, et al.Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)[J]. Autophagy, 2016, 12(1): 1-222. doi: 10.1080/15548627.2015.1100356. [41] Levine B, Liu R, Dong X, et al.Beclin orthologs: integrative hubs of cell signaling, membranetrafficking,and physiology[J]. Trends in Cell Biology, 2015, 25(9): 533-544. [42] Fernández Á F, Sebti S, Wei Y, et al.Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature, 2018, 558(7708): 136-140. |