[1] 林晓鹏, 顾天平. 物联网技术在现代农业中的应用概况[J]. 农业工程技术, 2024, 44(5): 84-85. Lin X P, Gu T P.Overview of the application of internet of things technology in modern agriculture[J]. Agricultural Engineering Technology, 2024, 44(5): 84-85. [2] 王未名, 林东艺, 王丹海, 等. 废弃茶叶基摩擦纳米发电机开发及其应用[J]. 宁德师范学院学报(自然科学版), 2024, 36(1): 92-98. Wang W M, Lin D Y, Wang D H, et al.Development and application of triboelectric nanogenerator based on waste tea[J]. Journal of Ningde Normal University (Natural Science), 2024, 36(1): 92-98. [3] 阚君武, 吕鹏, 王进, 等. 脱涡致振式压电风力发电机性能分析与试验[J]. 农业机械学报, 2021, 52(4): 411-417. Kan J W, Lü P, Wang J, et al.Performance analysis and test of vortex induced vibration piezoelectric wind harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 411-417. [4] 杨鹏, 耿正龙, 张永磊, 等. 风光互补发电系统在转地饲养蜂场中的应用研究[J]. 中国农业科技导报, 2017, 19(8): 71-76. Yang P, Geng Z L, Zhang Y L, et al.Application and research on wind-solar hybrid generation system in different feeding apiary[J]. Journal of Agricultural Science and Technology, 2017, 19(8): 71-76. [5] Fan F R, Tian Z Q, Wang Z L.Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. [6] Ren Z W, Wu L T, Pang Y K, et al.Strategies for effectively harvesting wind energy based on triboelectric nanogenerators[J]. Nano Energy, 2022, 100: 107522. doi: 10.1016/j.nanoen.2022.107522. [7] Shi B R, Wang Q M, Su H, et al.Progress in recent research on the design and use of triboelectric nanogenerators for harvesting wind energy[J]. Nano Energy, 2023, 116: 108789. doi: 10.1016/j.nanoen.2023.108789. [8] Hu Y X, Li X Y, Gao Y K, et al.A combined wind harvesting and speed sensing system based on constant-voltage triboelectric nanogenerator[J]. Advanced Energy Materials, 2024, 14(23): 2400672. doi: 10.1002/aenm.202400672. [9] Saqib Q M, Shaukat R A, Khan M U, et al.Biowaste peanut shell powder-based triboelectric nanogenerator for biomechanical energy scavenging and sustainably powering electronic supplies[J]. ACS Applied Electronic Materials, 2020, 2(12): 3953-3963. [10] Wang S, Lin L, Wang Z L.Triboelectric nanogenerators as self-powered active sensors[J]. Nano Energy, 2015, 11: 436-462. [11] Zheng Q, Tang Q, Wang Z L, et al.Self-powered cardiovascular electronic devices and systems[J]. Nature Reviews Cardiology, 2021, 18(1): 7-21. [12] Li H, Zhao C C, Wang X X, et al.Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics[J]. Advanced Science, 2019, 6(6): 1801625. doi: 10.1002/advs.201801625. [13] Li Z, Feng H Q, Zheng Q, et al.Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing[J]. Nano Energy, 2018, 54: 390-399. [14] Choi D, Yoo D, Cha K J, et al.Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf[J]. Nano Energy, 2017, 36: 250-259. [15] Zhang R Y, Hummelgård M, Örtegren J, et al.High performance single material-based triboelectric nanogenerators made of hetero-triboelectric half-cell plant skins[J]. Nano Energy, 2022, 94: 106959. doi: 10.1016/j.nanoen.2022.106959. [16] Alluri N R, Raj N P M J, Khandelwal G, et al. Aloe vera: a tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric approaches[J]. Nano Energy, 2020, 73: 104767. doi: 10.1016/j.nanoen.2020.104767. [17] Wu J M, Chang C K, Chang Y T.High-output current density of the triboelectric nanogenerator made from recycling rice husks[J]. Nano Energy, 2016, 19: 39-47. [18] Jiao J Y, Lu Q X, Wang Z L, et al.Sandwich as a triboelectric nanogenerator[J]. Nano Energy, 2021, 79: 105411. doi: 10.1016/j.nanoen.2020.105411. [19] Saqib Q M, Shaukat R A, Khan M U, et al.Biowaste peanut shell powder-based triboelectric nanogenerator for biomechanical energy scavenging and sustainably powering electronic supplies[J]. ACS Applied Electronic Materials, 2020, 2(12): 3953-3963. [20] Xia K Q, Zhu Z Y, Fu J M, et al.A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring[J]. Nano Energy, 2019, 60: 61-71. [21] Zhu H K, Liu F, Ye Y, et al.Application of machine learning algorithms in quality assurance of fermentation process of black tea: based on electrical properties[J]. Journal of Food Engineering, 2019, 263: 165-172. [22] 冯呈艳, 余志, 陈玉琼, 等. 茶鲜叶介电特性的初步研究[J]. 华中农业大学学报, 2014, 33(2): 111-115. Feng C Y, Yu Z, Chen Y Q, et al.Researches on the dielectric property of fresh tea leaves[J]. Journal of Huazhong Agricultural University, 2014, 33(2): 111-115. [23] Hua J J, Xu Q, Yuan H B, et al.Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea[J]. Journal of Food Composition and Analysis, 2021, 96: 103751. doi: 10.1016/j.jfca.2020.103751. [24] 蒋阿婷, 刘巧芳, 肖娟娟, 等. 湖南黑毛茶优化拼配样的风味品质研究[J]. 茶叶科学, 2024, 44(5): 763-778. Jiang A T, Liu Q F, Xiao J J, et al.Research on flavors and qualities of optimization blending samples of Hunan raw dark teas[J]. Journal of Tea Science, 2024, 44(5): 763-778. [25] Dudem B, Dharmasena R D I G, Graham S A, et al. Exploring the theoretical and experimental optimization of high-performance triboelectric nanogenerators using microarchitectured silk cocoon films[J]. Nano Energy, 2020, 74: 104882. doi: 10.1016/j.nanoen.2020.104882. [26] Diaz A F, Felix-Navarro R M. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties[J]. Journal of Electrostatics, 2004, 62(4): 277-290. [27] 王盛琳, 杨崇山, 刘中原, 等. 基于电特性的红茶发酵中茶多酚含量快速检测方法[J]. 茶叶科学, 2021, 41(2): 251-260. Wang S L, Yang C S, Liu Z Y, et al.Rapid detection method of tea polyphenol content in black tea fermentation based on electrical properties[J]. Journal of Tea Science, 2021, 41(2): 251-260. [28] 张宁, 何剑, 丑修建. PDMS基摩擦纳米发电机膜内掺杂[J]. 微纳电子技术, 2021, 58(4): 309-315. Zhang N, He J, Chou X J.Intramembrane doping of PDMS-based triboelectric nanogenerator[J]. Micronanoelectronic Technology, 2021, 58(4): 309-315. |