[1] Zhu J C, Zhu Y, Wang K, et al.Characterization of key aroma compounds and enantiomer distribution in Longjing tea[J]. Food Chemistry, 2021, 361: 130096. doi: 10.1016/j.foodchem.2021.130096. [2] Guo Y H, Yang X T, Wang H L, et al.Study on the establishment of quality discrimination model of Longjing 43 green tea (Camellia sinensis (L.) Kuntze)[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 31: 100389. doi: 10.1016/j.jarmap.2022.100389. [3] Lu X H, Wang J, Lu G D, et al.Quality level identification of West Lake Longjing green tea using electronic nose[J]. Sensors and Actuators B: Chemical, 2019, 301: 127056. doi: 10.1016/j.snb.2019.127056. [4] Gharibzahedi S M T, Barba F J, Zhou J, et al. Electronic sensor technologies in monitoring quality of tea: a review[J]. Biosensors, 2022, 12(5): 356. doi: 10.3390/bios12050356. [5] Xu M, Wang J, Gu S.Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy[J]. Journal of Food Engineering, 2019, 241: 10-17. doi: 10.1016/j.jfoodeng.2018.07.020. [6] Yang J R, Wang J, Lu G D, et al.TeaNet: deep learning on near-infrared spectroscopy (NIR) data for the assurance of tea quality[J]. Computers and Electronics in Agriculture, 2021, 190: 106431. doi: 10.1016/j.compag.2021.106431. [7] Hu Y, Yu H H, Song X B, et al.Comprehensive assessment of matcha qualities and visualization of constituents using hyperspectral imaging technology[J]. Food Research International, 2024, 196: 115110. doi: 10.1016/j.foodres.2024.115110. [8] Li Y T, Sun J, Wu X H, et al.Grade identification of Tieguanyin tea using fluorescence hyperspectra and different statistical algorithms[J]. Journal of Food Science, 2019, 84(8): 2234-2241. [9] Wang X R, Liu Y, Gong N, et al.Design of a tea strip-lining degree discrimination system based on appearance characteristics and near-infrared spectroscopy[J]. Journal of Food Composition and Analysis, 2024, 136: 106779. doi: 10.1016/j.jfca.2024.106779. [10] Wang H J, Gu J N, Wang M R.A review on the application of computer vision and machine learning in the tea industry[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1172543. doi: 10.3389/fsufs.2023.1172543. [11] Liu F, Wang S D, Pang S C, et al.Detection and recognition of tea buds by integrating deep learning and image-processing algorithm[J]. Journal of Food Measurement and Characterization, 2024, 18(4): 2744-2761. [12] Yan L, Pang L, Wang H, et al.Recognition of different Longjing fresh tea varieties using hyperspectral imaging technology and chemometrics[J]. Journal of Food Process Engineering, 2020, 43(4): e13378. doi: 10.1111/jfpe.13378. [13] Zhang C, Wang J, Yan T, et al.An instance-based deep transfer learning method for quality identification of Longjing tea from multiple geographical origins[J]. Complex & Intelligent Systems, 2023, 9(3): 3409-3428. [14] Jia W S, Ma Z H, Lan Y, et al.An identification of the growing area of Longjing tea based on the Fisher's discriminant analysis with the combination of principal components analysis[J]. Intelligent Automation & Soft Computing, 2013, 19(4): 545-553. [15] Chen Y, Guo M Q, Chen K, et al.Predictive models for sensory score and physicochemical composition of Yuezhou Longjing tea using near-infrared spectroscopy and data fusion[J]. Talanta, 2024, 273: 125892. doi: 10.1016/j.talanta.2024.125892. [16] Yu X L, Li J, Yang Y Q, et al.Comprehensive investigation on flavonoids metabolites of Longjing tea in different cultivars, geographical origins, and storage time[J]. Heliyon, 2023, 9(6): e17305. doi: 10.1016/j.heliyon.2023.e17305. [17] Fang Z T, Yang W T, Li C Y, et al.Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China[J]. Journal of Food Composition and Analysis, 2021, 97: 103772. doi: 10.1016/j.jfca.2020.103772. [18] Li Q Q, Zhang C Y, Wang H W, et al.Machine learning technique combined with data fusion strategies: a tea grade discrimination platform[J]. Industrial Crops and Products, 2023, 203: 117127. doi: 10.1016/j.indcrop.2023.117127. [19] Li Y T, He L Y, Jia J M, et al.High-efficiency tea shoot detection method via a compressed deep learning model[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(3): 159-166. [20] Zhu F L, Wang J, Zhang Y Q, et al.An improved 3D-SwinT-CNN network to evaluate the fermentation degree of black tea[J]. Food Control, 2025, 167: 110756. doi: 10.1016/j.foodcont.2024.110756. [21] Zhu Y W, Chen S Y, Yin H Z, et al.Classification of oolong tea varieties based on computer vision and convolutional neural networks[J]. Journal of the Science of Food and Agriculture, 2024, 104(3): 1630-1637. [22] Khalvati F, Wong A, Haider M A.Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models[J]. BMC Med Imaging, 2015, 15: 27. doi: 10.1186/s12880-015-0069-9. [23] Jiang M F, Chen Z.Symmetry detection algorithm to classify the tea grades using artificial intelligence[J]. Microprocessors and Microsystems, 2021, 81: 103738. doi: 10.1016/j.micpro.2020.103738. [24] Rahman M T, Ferdous S, Jenin M S, et al.Characterization of tea (Camellia sinensis) granules for quality grading using computer vision system[J]. Journal of Agriculture and Food Research, 2021, 6: 100210. doi: 10.1016/j.jafr.2021.100210. [25] Gill G S, Kumar A, Agarwal R.Nondestructive grading of black tea based on physical parameters by texture analysis[J]. Biosystems Engineering, 2013, 116(2): 198-204. [26] Laddi A, Prakash N R.Case studies in intelligent computing[M]. 1st ed. New York: Auerbach Publications, 2014: 535-546. [27] 刘自强, 周铁军, 傅冬和, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. Liu Z Q, Zhou T J, Fu D H, et al.Study on image feature extraction of fresh tea based on color and shape and its application in tea variety recognition[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. [28] 谢汉垒. 基于无损检测技术茶叶等级识别和拼配技术研究[D]. 合肥: 安徽农业大学, 2020. Xie H L.Study on tea grade recognition and matching technology based on nondestructive testing technology [D]. Hefei: Anhui Agricultural University, 2020. [29] 张金炎, 曹成茂, 李文宝, 等. 基于多特征融合的茶叶鲜叶等级识别的方法研究[J]. 安徽农业大学学报, 2021, 48(3): 480-487. Zhang J Y, Cao C M, Li W B, et al.Study on the method of recognition of fresh leaf grade of tea based on multi-feature fusion[J]. Journal of Anhui Agricultural University, 2021, 48(3): 480-487. [30] Gan N, Sun M F, Lu C Y, et al.High-speed identification system for fresh tea leaves based on phenotypic characteristics utilizing an improved genetic algorithm[J]. Journal of the Science of Food and Agriculture, 2022, 102(15): 6858-6867. [31] Bakhshipour A, Zareiforoush H, Bagheri I.Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features[J]. Journal of Food Measurement and Characterization 2020, 14(3): 1402-1416. [32] Liu Y, Huang J L, Li M H, et al.Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 267: 120537. doi: 10.1016/j.saa.2021.120537. [33] Jia J M, Zhou X F, Li Y, et al.Establishment of a rapid detection model for the sensory quality and components of Yuezhou Longjing tea using near-infrared spectroscopy[J]. LWT, 2022, 164: 113625. doi: 10.1016/j.lwt.2022.113625. [34] Li C L, Guo H W, Zong B Z, et al.Rapid and non-destructive discrimination of special-grade flat green tea using near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206: 254-262. doi: 10.1016/j.saa.2018.07.085. |