[1] 张金霞, 丁兆堂, 洪永聪, 等. 黄山群体种自然杂交后代儿茶素组分的变异特性[J]. 植物遗传资源学报, 2010, 11(6): 736-740. Zhang J X, Ding Z T, Hong Y C, et al.Research on catechins of the natural hybrid progenies of Camellia sinensis cv. Huangshanzhong[J]. Journal of Plant Genetic Resources, 2010, 11(6): 736-740. [2] 王常红, 匡新, 王嘉磊, 等. 南茶北引茶叶品质变化的初步研究[C]. 中国茶叶学会. 2007年全国茶业科技学术研讨会, 2007: 170-174. Wang C H, Kuang X, Wang J L, et al.Study on quality change of tea when tea plants translated from south to north[C]. Tea Science Society of China. 2007 National Tea Science and Technology Symposium, 2007: 170-174. [3] 王淑娟, 苏欢, 陈永强, 等. “南茶北引”后茶叶品质的变化[J]. 茶业通报, 2018(4): 179-183. Wang S J, Su H, Chen Y Q, et al.Changes in tea quality after “South-to-North Tea Introduction”[J]. Journal of Tea Business, 2018(4): 179-183. [4] 郑海涛. 山东茶区与南方茶区不同茶树品种特性试验比较[J]. 中国食物与营养, 2011, 17(7): 20-22. Zheng H T.Comparative trial on characteristics of different tea plant varieties between Shandong and Southern tea regions[J]. Food and Nutrition in China, 2011, 17(7): 20-22. [5] 陈丹, 赵燕妮, 彭佳堃, 等. 基于代谢组学的不同年份晒青红茶化学成分分析[J]. 食品科学, 2022, 43(4): 150-159. Chen D, Zhao Y N, Peng J K, et al.Chemical composition profiling of sun-dried black tea of different ages based on metabolomics approach[J]. Food Science, 2022, 43(4): 150-159. [6] 闫乐乐, 卜璐璐, 牛良, 等. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. Yan L L, Bu L L, Niu L, et al.Widely targeted metabolomics analysis of the effects of myzus persicae feeding on prunus persica secondary metabolites[J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158. [7] 唐昊, 李沅秋, 甘晓凤, 等. 基于广泛代谢组学分析慈竹笋营养成分及其提取物的抗氧化活性[J]. 现代食品科技, 2021, 37(6): 304-311. Tang H, Li Y Q, Gan X F, et al.Analyze nutritional components of Bambusa emeiensisi shoots and antioxidant activity of its extracts based on widely targeted metabolomics[J]. Modern Food Science and Technology, 2021, 37(6): 304-311. [8] 齐晓雨, 孔小平, 周红伟, 等. 基于广靶代谢组学分析胡萝卜萜类代谢产物差异[J]. 中国农业科学, 2024, 57(16): 3250-3263. Qi X Y, Kong X P, Zhou H W, et al.Crucial factors impacting carrot flavor analysis based on broad target metabolomics[J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263. [9] 张少平, 李洲, 练冬梅, 等. 基于广靶代谢组学分析马齿苋根茎叶中5类重要初生代谢产物[J]. 江苏农业科学, 2021, 49(24): 139-146. Zhang S P, Li Z, Lian D M, et al.Wide-target metabolomic profiling of five primary metabolite classes in Portulaca oleracea roots, stems and leaves[J]. Jiangsu Agricultural Sciences, 2021, 49(24):139-146. [10] 林洁鑫, 颜廷宇, 邵淑贤, 等. 基于UPLC-MS/MS的不同产地金观音红茶代谢组学分析[J]. 江苏农业科学, 2022, 50(15): 162-168. Lin J X, Yan T Y, Shao S X, et al.Metabolomic profiling of Jinguanyin black tea from different regions via UPLC-MS/MS[J]. Jiangsu Agricultural Sciences, 2022, 50(15): 162-168. [11] Huang R, Wang Z H, Wen W W, et al.Comprehensive dissection of variation and accumulation of free amino acids in tea accessions[J]. Horticulture Research, 2024, 11(1): 313-327. [12] Yang C, Hu Z Y, Lu M L, et al.Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea[J]. Food Research International, 2018, 106: 909-919. doi: 10.1016/j.foodres.2018.01.069. [13] 周杨, 胡小静, 周红杰, 等. 云南普洱茶水溶性碳水化合物的变化[J]. 湖南农业大学学报(自然科学版), 2006, 32(6): 625-627. Zhou Y, Hu X J, Zhou H J, et al.Changes of water soluble carbohydrates in different Yunnan Pu-erh tea[J]. Journal of Hunan Agricultural University (Natural Sciences), 2006, 32(6): 625-627. [14] 薄晓培. 低温对茶树渗透调节物质含量和保护酶活及挥发物影响[D]. 杭州: 中国计量大学, 2016 Bo X P.Effect of low temperature on contents of osmoregulation substances and activity of protective enzymes and volatiles of tea plant [D]. Hangzhou: China Jiliang University, 2016. [15] 杨恕玲, 单守明, 巩传银, 等. 水杨酸对休眠期茶树光合作用和抗冻性的影响[J]. 中国农学通报, 2009, 25(15): 121-124. Yang S L, Shan S M, Gong C Y, et al.Effect of salicylic acid on photosynthesis and cold resistant in tea tree during dormancy[J]. Chinese Agricultural Science Bulletin, 2009, 25(15): 121-124. [16] 陈美丽. 基于感官审评与化学计量学的茶叶色香味品质研究[D]. 杭州: 浙江大学, 2013. Chen M L.Quality study of tea color, aroma and taste based on sensory evaluation and chemometrics [D]. Hangzhou: Zhejiang University, 2013. [17] 李星, 刘学, 李伟. 浅析都匀毛尖茶灰分和水浸出物含量[J]. 农业与技术, 2020, 40(8): 34-35. Li X, Liu X, Li W.Analysis of ash content and water extract in Duyun Maojian tea[J]. Agriculture and Technology, 2020, 40(8): 34-35. [18] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003. Wan X C.Tea biochemistry [M]. Beijing: China Agriculture Press, 2003. [19] 陈宗懋, 杨亚军. 中国茶经[M]. 上海: 上海文化出版社, 2011. Chen Z M, Yang Y J.The Chinese tea classic [M]. Shanghai: Shanghai Culture Publishing House, 2011. [20] 李明非. 灰分对茉莉花茶品质的影响初探[J]. 西南农业大学学报, 1997, 19(3): 311-314. Li M F.The influence of jasmine tea ash on the tea quality[J]. Journal of Southwest Agricultural University, 1997, 19(3): 311-314. [21] 刘晓璐, 朱亚兰, 于敏, 等. 低温胁迫下茶树叶片细胞壁结构变化及光合特性[J]. 茶叶科学, 2024, 44(6): 917-927. Liu X L, Zhu Y L, Yu M, et al.Changes in cell wall structure and photosynthetic characteristics of tea leaves under low temperature stress[J]. Jounral of Tea Science, 2024, 44(6): 917-927. [22] Wang L F, Park S C, Chung J O, et al.The compounds contributing to the greenness of green tea[J]. Journal of Food Science, 2010, 69(8): 301-305. [23] 方洪生. 海拔高度对茶园环境及茶叶品质的影响[J]. 安徽农业科学, 2014, 42(20): 6573-6575. Fang H S.Effects of different elevations of tea gardens on environment and tea quality[J]. Journal of Anhui Agricultral, 2014, 42(20): 6573-6575. [24] Baranwal A, Aggarwal P, Rai A, et al.Pharmacological actions and underlying mechanisms of catechin: a review[J]. Mini Reviews in Medicinal Chemistry, 2022, 22(5): 821-833. [25] 崔宏春, 张建勇, 敖存, 等. 不同加工工艺西湖龙井茶品质差异特性分析[J]. 食品工业科技, 2021, 42(13): 268-273. Cui H C, Zhang J Y, Ao C, et al.Difference quality characteristics of Xihu Longjing tea with different processing technology[J]. Science and Technology of Food Industry, 2021, 42(13): 268-273. [26] Meyer B R, White H M, Mccormack J D N E D. Catechin composition, phenolic content, and antioxidant properties of commercially-available bagged, gunpowder, and matcha green teas[J]. Plant Foods for Human Nutrition, 2023, 78(4): 662-669. [27] Liu T T, Li J, Li Z, et al.EGCG prevents bone loss in ovariectomized mice by suppressing osteoclastogenesis via the inhibition of NF-κB, MAPK, and AKT signaling pathways[J]. Food Science and Human Wellness, 2025, 14(8): 9250511. doi: 10.26599/FSHW.2025.9250511. [28] Zhang L, Cao Q Q, Granato D, et al.Association between chemistry and taste of tea: a review[J]. Trends in Food Science & Technology, 2020, 101: 139-149. doi: 10.1016/j.tifs.2020.05.015. [29] 金孝芳. 绿茶滋味化合物研究[D]. 重庆: 西南大学, 2007. Jin X F.Research on taste-active compounds in green tea [D]. Chongqing: Southwest University, 2007. [30] 宋亚赛. 绿茶苦涩味的化学成分及其相互作用研究[D]. 合肥: 安徽农业大学, 2016. Song Y S.Analysis on chemical components of bitterness and astringency in green tea & interaction between taste-active components [D]. Hefei: Anhui Agricultural University, 2016. [31] 刘东娜, 郑晓娟, 卿钰, 等. 蒙顶山名茶游离氨基酸总量及组分的测定分析[J]. 四川农业大学学报, 2012, 30(2): 190-194, 209. Liu D N, Zheng X J, Qing Y, et al.Analysis of free amino acid content and its components in various Mengding tea[J]. Journal of Sichuan Agricultural University, 2012, 30(2): 190-194, 209. [32] 张婷, 刘慧琴, 郭勤卫, 等. 十六份辣椒材料游离氨基酸组成的主成分分析与聚类分析[J]. 浙江农业学报, 2021, 33(4): 640-650. Zhang T, Liu H Q, Guo Q W, et al.Principal component analysis and cluster analysis for evaluating free amino acids of 16 pepper materials[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 640-650. [33] 云金虎, 江皓, 韩文学, 等. 不同品种海棠叶茶游离氨基酸组成分析与评价[J]. 食品与发酵工业, 2020, 46(19): 237-243. Yun J H, Jiang H, Han W X, et al.Analysis and evaluation of free amino acid in different cultivars of crabapple leaf tea[J]. Food and Fermentation Industries, 2020, 46(19): 237-243. [34] 刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析[J]. 食品科学, 2019, 40(10): 243-250. Liu W, Zhang Q, Li Z J, et al.Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds[J]. Food Science, 2019, 40(10): 243-250. [35] Wang H, Provan G J, Helliwell K.Tea flavonoids: their functions, utilisation and analysis[J]. Trends Science and Technology, 2000, 11(4/5): 152-160. [36] Yan K N, Wang J T, Zhou M X, et al.Insights into potential flavor-active peptides and taste-related compounds in Longjing teas: a comparative study of ‘Longjing 43’ and ‘Qunti’ cultivars[J]. Food Chemistry, 2025, 471(15): 142790. doi: 10.1016/j.foodchem.2025.142790. [37] Cui Y, Lai G, Wen M, et al.Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry[J]. Food Chemistry, 2022, 386: 132788. doi: 10.1016/j.foodchem.2022.132788. [38] Dai Q, He Y, Ho C T, et al.Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment[J]. Journal of Food Science and Technology, 2017, 54(9): 2919-2928. [39] Zhao M, Jin J, Gao T, et al.Glucosyl transferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis[J]. Frontiers in Plant Science, 2019, 10: 1675. doi: 10.3389/fpls.2019.01675.eCollection2019. [40] Chen P H, Lin R H, Chiu C F, et al.Mitigating low-temperature frost damage in Taiwan high-altitude tea cultivation: physiological insight and protective strategies[J]. Planta, 2025, 261(6): 125. doi: 10.1007/s00425-025-04704-2. [41] 陈德权, 任杨梅, 何梦迪, 等. 基于感官评价和代谢组学技术解析紫阳绿茶风味特征和生化成分差异[J]. 茶叶科学, 2024, 44(2): 316-328. Chen D Q, Ren Y M, He M D, et al.Analysis of flavor characteristics and biochemical composition differences of Ziyang green tea based on sensory evaluation and metabolomics techniques[J]. Journal of Tea Science, 2024, 44(2): 316-328. [42] Hu Q C, Zheng Y C, Yang Y, et al.Widely targeted metabolomics analysis reveals the formation of nonvolatile flavor qualities during oolong tea manufacturing: a case study of Jinguanyin[J]. Frontiers in Nutrition, 2023, 10: 1283960. doi: 10.3389/fnut.2023.1283960. [43] Deng W, Ashihara H.Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings[J]. Plant & Cell Physiology, 2010(12): 2105-2118. [44] 燕飞, 曲东, 纪鹏彬, 等. 基于非靶向代谢组学分析杜仲金花茶发酵过程中代谢物的特征[J]. 食品科学, 2023, 44(10): 300-309. Yan F, Qu D, Ji P B, et al.Non-targeted metabolomic characterization of metabolites during the fermentation of ‘golden flower’ Eucommia ulmoides leaf tea[J]. Food Science, 2023, 44(10): 300-309. [45] 林洁鑫, 王鹏杰, 金珊, 等. 基于广泛靶向代谢组学的不同产地红茶代谢产物比较分析[J]. 食品工业科技, 2022, 43(2): 9-19. Lin J X, Wang P J, Jin S, et al.Comparative analysis of black tea metabolites from different origins based on extensively targeted metabolomics[J]. Science and Technology of Food Industry, 2022, 43(2): 9-19. [46] 仪丹. 茶树两个响应低温与干旱胁迫的苯丙氨酸解氨酶基因克隆, 表达与功能分析[D]. 重庆: 西南大学, 2020. Yi D.Cloning, expression and functional analysis of two phenylalanine ammomia-lysae genes of Camellia sinensis in response to low temperature and drought stress [D]. Chongqing: Southwest University, 2020. [47] Yue C, Peng H, Li W, et al.Untargeted metabolomics and transcriptomics reveal the mechanism of metabolite differences in spring tender shoots of tea plants of different ages[J]. Foods, 2022, 11: 2303. doi: 10.3390/foods11152303. [48] Chen H, Yu F, Kang J, et al.Quality chemistry, physiological functions, and health benefits of organic acids from tea (Camellia sinensis)[J]. Molecules, 2023, 28(5): 2339. doi: 10.3390/molecules28052339. [49] Li X.Lignin metabolism is crucial in the plant responses to Tambocerus elongatus (Shen) in Camellia sinensis L[J]. Plants, 2025, 14(2): 260. doi: 10.3390/plants14020260. [50] 周汉琛, 刘亚芹, 雷攀登. 不同白化期的‘黄山白茶’代谢物差异分析[J]. 热带亚热带植物学报, 2022, 30(2): 187-194. Zhou H C, Liu Y Q, Lei P D.Metabolites profiling of green tea processed from ‘Huangshanbaicha No. 1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany, 2022, 30(2): 187-194. [51] Tan X, Li H, Zhang Z, et al.Characterization of the difference between day and night temperatures on the growth, photosynthesis, and metabolite accumulation of tea seedlings[J]. International Journal of Molecular Sciences, 2023, 24(7): 19. doi: 10.3390/ijms24076718. |