[1] 吴芹瑶, 杨江帆, 林程, 等. 中国茶叶生产布局变迁研究[J]. 茶叶科学, 2022, 42(2): 290-300. Wu Q Y, Yang J F, Lin C, et al.Research on the changes of China's tea production layout[J]. Journal of Tea Science, 2022, 42(2): 290-300. [2] 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2): 211-216. Sun X X, Mu S M, Xu Y Y, et al.Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2): 211-216. [3] 张浩, 陈勇, 汪巍, 等. 基于主动计算机视觉的茶叶采摘定位技术[J]. 农业机械学报, 2014, 45(9): 61-65, 78. Zhang H, Chen Y, Wang W, et al.Positioning method for tea picking using active computer vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 61-65, 78. [4] 吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589. Wu X M, Zhang F G, Lü J T.Research on recognition of tea tender leaf based on image color information[J]. Journal of Tea Science, 2013, 33(6): 584-589. [5] 刘自强, 周铁军, 傅冬和, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. Liu Z Q, Zhou T J, Fu D H, et al.Image feature extraction of fresh tea leaf based on color and shape and its application in tea variety recognition[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. [6] 胡和平, 吴明辉, 洪孔林, 等. 基于改进YOLOv5s的茶叶嫩芽分级识别方法[J]. 江西农业大学学报, 2023, 45(5): 1261-1272. Hu H P, Wu M H, Hong K L, et al.Classification and recognition method for tea buds based on improved YOLOv5s[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(5): 1261-1272. [7] 徐海东, 马伟, 谭彧, 等. 基于YOLOv5深度学习的茶叶嫩芽估产方法[J]. 中国农业大学学报, 2022, 27(12): 213-220. Xu H D, Ma W, Tan Y, et al.Yield estimation method for tea buds based on YOLOv5 deep learning[J]. Journal of China Agricultural University, 2022, 27(12): 213-220. [8] 朱红春, 李旭, 孟炀, 等. 基于Faster R-CNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224. Zhu H C, Li X, Meng Y, et al.Tea bud detection based on Faster R-CNN network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224. [9] 张晴晴, 刘连忠, 宁井铭, 等. 基于YOLOV3优化模型的复杂场景下茶树嫩芽识别[J]. 浙江农业学报, 2021, 33(9): 1740-1747. Zhang Q Q, Liu L Z, Ning J M, et al.Tea buds recognition under complex scenes based on optimized YOLOV3 model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. [10] 马志艳, 李辉, 杨光友. 基于YOLOv3算法的智能采茶机关键技术研究[J]. 中国农机化学报, 2024, 45(4): 199-204, 236. Ma Z Y, Li H, Yang G Y.Research on key technologies of intelligent tea picking machine based on YOLOv3 algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 199-204, 236. [11] 王梦妮, 顾寄南, 王化佳, 等. 基于改进YOLOv5s模型的茶叶嫩芽识别方法[J]. 农业工程学报, 2023, 39(12): 150-157. Wang M N, Gu J N, Wang H J, et al.Method for identifying tea buds based on improved YOLOv5s model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(12): 150-157. [12] 洪孔林, 吴明辉, 高博, 等. 基于改进YOLOv7-tiny的茶叶嫩芽分级识别方法[J]. 茶叶科学, 2024, 44(1): 62-74. Hong K L, Wu M H, Gao B, et al.A grading identification method for tea buds based on improved YOLOv7-tiny[J]. Journal of Tea Science, 2024, 44(1): 62-74. [13] 严蓓蓓, 纪元浩, 曲凤凤, 等. 基于改进YOLOv5s的茶叶嫩芽检测[J]. 中国农机化学报, 2024, 45(4): 168-174. Yan B B, Ji Y H, Qu F F, et al.Detection of tea buds based on improved YOLOv5s[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 168-174. [14] 朱铭敏, 张国平, 谭建军, 等. 基于YOLOv5s的轻量级茶叶嫩芽终端检测模型[J]. 浙江农业学报, 2024, 36(6): 1413-1424. Zhu M M, Zhang G P, Tan J J, et al.A lightweight tea buds terminal detection model based on YOLOv5s[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1413-1424. [15] 黄家才, 唐安, 陈光明, 等. 基于Compact-YOLO v4算法的茶叶嫩芽移动端识别方案[J]. 农业机械学报, 2024: 1-11[2024-08-09].http://kns.cnki.net/kcms/detail/11.1964.S.20230113.1315.002.html. Huang J C, Tang A, Chen G M, et al. Mobile recognition solution of tea buds based on compact-YOLOv4 algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024: 1-11[2024-08-09]. http://kns.cnki.net/kcms/detail/11.1964.S.20230113.1315.002.html. [16] Chen J R, Kao S H, He H, et al.Run, don't walk: chasing higher FLOPS for faster neural networks[C]//IEEE Computer Society. Proceedings of the 2023 IEEE/CVF conference on computer vision and pattern recognition. Vancouver: IEEE, 2023: 12021-12031. [17] Liu Y C, Shao Z R, Hoffmann N.Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv, 2021: arXiv:2112.05561. doi: 10.48550/arXiv.2112.05561. [18] Hu J, Shen L, Sun G.Squeeze-and-excitation networks[C]//IEEE Computer Society. Proceedings of the 2018 IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 7132-7141. [19] Redmon J, Farhadi A. Yolov3: an incremental improvement[J]. arXiv, 2018: arXiv:1804.02767. doi: 10.48550/arXiv.1804.02767. [20] 陈慧颖, 宋青峰, 常天根, 等. 基于YOLOv5m和CBAM-CPN的单分蘖水稻植株表型参数提取[J]. 农业工程学报, 2024, 40(2): 307-314. Chen H Y, Song Q F, Chang T G, et al.Extraction of the single-tiller rice phenotypic parameters based on YOLOv5m and CBAM-CPN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(2): 307-314. [21] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE Computer Society. Proceedings of the 2023 IEEE/CVF conference on computer vision and pattern recognition. Vancouver: IEEE, 2023: 7464-7475. |